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This is the key result that allows comparison of infinities. Perhaps it is the first serious theorem in set theory
after Cantor’s diagonalization argument. Apparently Cantor conjectured this result, and it was proven
independently by F. Bernstein and E. Schröder in the 1890’s. This author is of the opinion that the proof
given below is the natural proof one would find after sufficient experimentation and reflection. [Suppes 1960]
gives a somewhat more formal version, and says that this proof is in [Fraenkel 1953], p. 102-103, and is
attributed by Fraenkel to J. M. Whitaker. One must mention [Hausdorff 1914] as an influential source which
helped to standardize modern usage.

It is noteworthy that there is no invocation of the Axiom of Choice, since one can imagine otherwise.

The argument below is not the most succinct possible, but is intended to lend a greater sense of inevitability
to the conclusion than might the shortest possible version.

Theorem: Let A and B be sets, with injections f : A → B and g : B → A. Then there exists a canonical
bijection F : A → B.

Proof: Let
Ao = {a ∈ A : a 6∈ g(B)} Bo = {b ∈ B : b 6∈ f(A)}

The sets
A2n = (g ◦ f)n(Ao) A2n+1 = (g ◦ f)ng(Bo)

are disjoint. Let A∞ be the complement in A to the union
⋃

n An. Define F by

F (a) =

 f(a) (for a ∈ An, n ∈ 2Z)
g−1(a) (for a ∈ An, n ∈ 1 + 2Z)
f(a) (for a ∈ A∞)

We must verify that this moderately clever apparent definition really gives a well-defined F , and that F is
a bijection. For n ≥ 1, let

Bn = f(An−1)

and also let B∞ = f(A∞).

The underlying fact is that A∪B (disjoint union) is partitioned into one-sided or two-sided maximal sequences
of elements that map to each other under f and g: we have three patterns. First, one may have

ao

f
−→b1

g
−→a1

f
−→b2

g
−→a2 → . . .

f
−→bn

g
−→an → . . .

beginning with ao ∈ Ao, all ai ∈ A and bi ∈ B. Second, one may have

bo

g
−→a1

f
−→b1

g
−→a2

f
−→b2 → . . .

g
−→an

f
−→bn → . . .

with bo ∈ Bo, and ai ∈ A and bi ∈ B. The third and last possibility is that none of the elements involved is
an image of Ao or Bo under any number of iterations of f ◦ g or g ◦ f . Such elements fit into pictures of the
form

. . .
g
−→a−2

f
−→b−1

g
−→a−1

f
−→bo

g
−→ao

f
−→b1

g
−→ . . .

where ai ∈ A and bi ∈ B. The fundamental point is that any two distinct such sequences of elements are
disjoint. And any element certainly lies in such a sequence.

The one-sided sequences of the form

ao

f
−→b1

g
−→a1

f
−→b2

g
−→a2 → . . .

f
−→bn

g
−→an → . . .
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beginning with ao ∈ Ao, can be broken up to give part of the definition of F by

F : ao

f
−→b1 F : a1

f
−→b2 . . .

The one-sided sequences of the form

bo

g
−→a1

f
−→b1

g
−→a2

f
−→b2 → . . .

g
−→an

f
−→bn → . . .

with bo ∈ Bo, beginning with bo ∈ Bo, can be broken up to give another part of the definition of F

bo

g
−→a1 b1

g
−→a2 . . .

which is to say

F : a1

g−1

−→ bo F : a2

g−1

−→ b1 . . .

For a double-sided sequence,

. . .
g
−→a−2

f
−→b−1

g
−→a−1

f
−→bo

g
−→ao

f
−→b1

g
−→ . . .

there are two equally simple ways to break it up, and we choose

F : ai

f
−→bi+1

Since the sequences partition A ∪ B, and since every element of B (and A) appears, F is surely a bijection
from A to B. ///
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