
(February 19, 2005)

Sheaf Cohomology
Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/̃ garrett/

There is a fundamental tension between the good formal properties of sheaf cohomology defined as right-
derived functors of the global-sections functor, and the computational accessibility of Čech cohomology.

Here we prove, under the reasonable assumption of local acyclicity of a sheaf, that the two notions of
cohomology agree.

The essential auxiliary notion for comparison of Čech and derived-functor cohomology is that of flasque
sheaf. We also give a resume of other standard adjectives applicable to sheaves.

• Computing by acyclic resolutions
• The global sections functor Γ(X, ∗)
• Conditions for acyclicity: some adjectives
• Basic properties of flasque sheaves
• Ringed spaces
• Injective OX -modules are flasque
• Flasque implies Γ(X, ·)-acyclic
• Čech cohomology of sheaves
• Čech-acyclicity of flasque sheaves
• Local acyclicity and comparison of cohomologies

1. Computing by acyclic resolutions

We first review the way that right derived functors are defined, in terms of injectives, and extend this in a
trivial but essential way, to computation via acyclic resolutions.

In the definition of right derived functors RiF of a left-exact functor F , one considers injective resolutions

0 → S → I0
f0

→
I1

f1

→
. . .

of modules, or of sheaves S on topological spaces X, or whatever, applies F to obtain

0 → FS → FI0
Ff0

→
FI1

Ff1

→
. . .

and then takes the ‘deleted complex’

0 → FI0
Ff0

→
FI1

Ff1

→
. . .

and then the takes cohomology of the latter complex:

RnF (S) := ker Ffn/im Ffn−1

This procedure defines the right derived functors RnF of F .

One then proves that, given two different injective resolutions, there is a chain homotopy between them, so
that the cohomology of the two image complexes is the same, so the definition of right derived functor is
independent of injective resolution.

More generally, for a fixed functor F , say that an object A is (F -)acyclic if all higher right derived functors
of F annihilate A, i.e., if RnF (A) = 0 for n > 0.
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In fact, the elementary homological algebra proof that right derived functors’ definitions do not depend upon
the choice of injective resolution shows that, if

0 → S → I0
f0

→
I1

f1

→
. . .

is injective and
0 → S → A0

g0

→
A1

g1

→
. . .

is merely F -acyclic, then we have a natural chain homotopy from

0 → FS → FI0
Ff0

→
FI1

Ff1

→
. . .

to
0 → FS → FA0

Fg0

→
FA1

Fg1

→
. . .

Therefore, we have a natural
RnF (S) ≈ ker Fgn/im Fgn−1

That is, if there is at least one injective resolution of an object S, then the derived functors RnF of F can
be computed via any F -acyclic resolution.

2. The global-sections functor Γ(X, ∗)
The right-derived functor procedure yields (‘true’) sheaf cohomology if F is the global sections functor

F (S) = Γ(X,S) := sections of S on all of X

That is, sheaf cohomology is an example of a right derived functor.

Here we note that the global-sections functor Γ(X, ∗) is left-exact.

3. Some adjectives

The very notion of ‘injective’ is ‘extrinsic’ to the extent that it depends upon the category. Further, from
the definition of right derived functors it follows immediately that injective sheaves are acyclic for any right
derived functors. One certainly might imagine that this ‘universal acyclicity’ of injectives is more than what
is needed for the global sections functor alone.

For the particular functor ‘take global sections’, other conditions on a sheaf still guarantee acyclicity and at
the same time are ‘intrinsic’ in that they do not refer to any ‘ambient category’. Threfore, in principle these
other conditions are more readily verifiable.

For the moment, we merely catalogue the most common adjectives potentially applicable to sheaves. In
many cases one proves that such sheaves are acyclic, but this is not to be taken for granted.

A sheaf is flabby (=Fr. ‘flasque’) or scattered if sections on open subsets always extend to the whole space.

A sheaf is soft (=Fr. ‘mou’) if sections on closed subsets always extend to the whole space.

A sheaf is c-soft if sections on compact subsets always extend to the whole space.

A sheaf S is fine if, for every locally finite covering of the space by opens Uα, there is a collection of
endomorphisms φα of the sheaf so that φαsx = 0 if x 6∈ Uα, and so that

∑
α φα = idS .

4. Basic properties of flasque sheaves
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Lemma: Products of flasque sheaves are flasque. ///

For a continuous map f : X → Y , recall that the direct image functor f∗ mapping sheaves on X to
sheaves on Y is defined by

(f∗S)(U) = F(f−1U)

for an open set U in Y . The image f∗S is the direct image sheaf.

Let j : U → X be an inclusion with U open in X. Let S be a sheaf on U . Define a presheaf by sending an
open V to S(V ) if V ⊂ U and sending V to {0} otherwise. Let j!S be the sheaf obtained from this presheaf.
Then j!S is the extension by zero of S from the open subset U to X. (The symbol j! is pronounced
‘j-lower-shriek’).

Lemma: If i : Z → X is the inclusion of a closed subset, and S is a sheaf on Z, show that i∗S has the
property that its stalks agree with those of S on Z and are zero outside Z. (Thus, this is the extension-by-zero
from a closed subset).

Proof:

Lemma: If j : U → X is the inclusion of an open subset, and S is a sheaf on U , show that j!S is the unique
sheaf on X with the property that its stalks agree with those of S on U and are zero outside Z, and whose
restriction to U is again S.

Lemma: Let j : U → X be an inclusion of an open U , and let i : Z → X the the inclusion of the closed
complement Z = X − U . Show that

0 → j!(S|U ) → S → i∗(S|Z) → 0

Proof:

Lemma: If j : X → Y is continuous and if F is a flasque sheaf on X, then j∗F is a flasque sheaf on Y .

Proof:

Lemma: Let
0 → F f

→
S g

→
Q→ 0

be an exact sequence of sheaves of abelian groups on a topological space X. If F is flasque then there is a
short exact sequence

0 → Γ(X,F)
Γf

→
Γ(X,S)

Γg

→
Γ(X,Q) → 0

If S is flasque, then Q is flasque.

Proof: The exactness of
0 → Γ(X,F) → Γ(X,S) → Γ(X,Q)

is elementary, and holds for any sheaves. For the surjectivity of Γ(X,S) → Γ(X,Q), let σ be a section of Q
on X. Stalkwise at x ∈ X there is sx ∈ Sx mapping to σx, since S → Q is onto. Then consider the family
of pairs (U, s) of open sets U and sections s ∈ Γ(U,S) so that

(Γg)(s) = σ|U

Since we have stalkwise surjectivity, this collection is non-empty. As usual, via Zorn’s lemma we can conclude
that there are maximal elements in this family, ordered by (U, s) ≤ (U ′, s′) if U ⊂ U ′ and s′|U = s. Let
(U, s) be maximal.

Suppose that U is strictly smaller than X. Take x ∈ X − U and a sufficiently small neighborhood V of x
with t ∈ Γ(V,S) so that (Γg)t = σ|V . Then

(Γg)(s|U∩V − t|U∩V ) = 0 ∈ Γ(U ∩ V,S)
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so by the exactness of the sequence

o → Γ(U ∩ V,F) → Γ(U ∩ V,S)

there is φ ∈ Γ(U ∩ V,F) which maps to s|U∩V − t|U∩V . Invoking the flasqueness of F , φ extends to an
element Φ ∈ Γ(X,F). Then we can extend s to a section of S on U ∪ V by taking t− (Γg)Φ|V on V . This
contradicts the maximality of U , and thereby proves that Γg is onto.

Now suppose that S is flasque. Let σ ∈ Γ(U,Q) for some non-empty open U in X. Note that a flasque sheaf
restricted to a subset is still flasque. Then the result just proven shows that Γ(U,S) → Γ(U,Q) is onto. Take
s ∈ Γ(U,S) mapping to σ. Since S is flasque, s extends to an element of Γ(X,S), which maps by Γg to an
extension of σ to an element of Γ(X,Q). Thus, Q is flasque. ///

5. Ringed spaces

Recall the definition: a ringed space (X,OX) is a topological space X with a sheaf of rings O = OX

on it. The latter sheaf of rings is the structure sheaf of X. Smooth manifolds, complex manifolds, and
topological manifolds can be viewed as such.

An OX -module is a sheaf M of abelian groups so that, for all opens U , M(U) is an O(U)-module, and in
a manner ‘compatible with all the restriction maps’. The compatibility requirement is that, if

ρO
UV : O(U) → O(V )

is the restriction map for O and
ρMUV : M(U) →M(V )

is the restriction map for M, (with U ⊃ V ) then the compatibility requirement on the module-structures is
that, for r ∈ O(U) and m ∈M(U),

ρMUV (rm) = (ρO
UV r)(ρMUV m)

Sheaves of abelian groups may naturally be viewed as O-modules for O being the sheaf of germs of locally
constant Z-valued functions.

Note that injectivity in the category of O-modules is possibly a weaker requirement than injectivity in some
larger category of sheaves.

6. Injective modules are flasque

The assertion of this section title is stronger than the (true) assertion that injective sheaves of abelian
groups are flasque: the category of OX -modules is smaller than that of injective sheaves of abelian groups,
and therefore the condition of injectivity as OX -module is weaker. Further, in some cases we will be given
injectivity as OX -module, rather than injectivity as sheaf of abelian groups, as a natural hypothesis, so we
would need the more general and stronger assertion.

Proposition: Any sheaf M on a ringed space (X,OX) which is an OX -module and which is injective in
the category of OX)-modules is flasque.

Proof: Let OU be the structure sheaf restricted to an open U in X and extended by 0 outside U . Let I be
an injective O-module, and let V ⊂ U be opens. Then we have an inclusion OV → OU of O-modules. The
definition of injectivity of I yields the surjectivity of the natural map

Hom(OU , I) → Hom(OV , I)

Since we have natural identifications
Hom(OU , I) ≈ Γ(U, I)
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we can conclude that I is indeed flasque. ///

7. Flasque implies acyclic

Let (X,O) be a ringed space. We may consider any topological space X as a ringed space, by taking O to
be the sheaf of germs of locally constant Z-valued functions, for example. We grant that every O-module on
X may be imbedded into an injective O-module. That is, we grant that in the category of O-modules there
are sufficiently many injective.

Proposition: A flasque O-module F on X is acyclic for the global sections functor Γ(X, ·). That is, for
i > 0 we have Hi(X,F) = 0

Proof: Let F → I be an imbedding into an injective O-module I, and let Q be the quotient. From above,
a quotient of flasque sheaves is flasque. Therefore, Q is flasque. Also, we have shown that we have an exact
sequence

0 → Γ(X,F) → Γ(X, I) → Γ(X,Q) → 0

Since I is injective, it is acyclic. Thus, from the long exact cohomology sequence we get

H1(X,F) = 0

Hi(X,F) ≈ Hi−1(X,Q)

for i > 1. By induction on i, we get the result. ///

8. Čech cohomology of sheaves

Let U be an open cover of a topological space X. Define an oriented q-simplex with respect U to be an
ordered (q + 1)-tuple σ = (U0, . . . , Uq) of elements of U so that

U0 ∩ . . . ∩ Uq 6= ∅

The support |σ| of σ is
|σ| := U0 ∩ . . . ∩ Uq

Given a sheaf (or even a presheaf) S on X, a Čech q-cochain f (with coefficients in S) is an assignment

(Up, . . . , Uq) → f((Up, . . . , Uq)) ∈ Γ(Up ∩ . . . ∩ Uq,S)

for every oriented q-simplex σ of U , so that, further, for a permutation π of indices 0, . . . , q we have

f(Uπ0, . . . , Uπq) = sign (π) f(Up, . . . , Uq)

where sign (π) is the sign of the permutation.

The abelian group of all Čech q-cochains is denoted Cq(U ,S).

Note that if some U ∈ U occurs more than once among Uo, . . . , Uq), then

f(Uo, . . . , Uq) = 0

Given an oriented q-simplex σ of U we define the (Čech) coboundary map

δ : Cq(U ,S) → Cq+1(U ,S)
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by

(δm)(σ) :=
q+1∑
i=0

(−1)i m(σi)|σ

where with
σi := (Uo, U1, . . . , Ûi, . . . , Uq+1)

where the notation Ûi indicates as usual that Ui is omitted.

Lemma: The Čech coboundary map δ satisfies δ2 = 0, so the Čech complex

0 → C0(U ,S)
δ

→
C1(U ,S)

δ

→
. . .

associated to the sheaf S and the covering U really is a complex of abelian groups.

Proof: The fact that δ2 = 0 is a matter of design in the definition, and is easy to check. ///

Then we can define the Čech cohomology groups simply as the cohomology of this complex:

Ȟ
i
(U ,S) = ker(δ on Ci(U ,S)/δCi−1(U ,S)

The extreme case is
Ȟ

0
(U ,S) = ker(δ on C0(U ,S)

One essential feature of the Čech cohomology groups is:

Proposition: For any sheaf S, topological space X, and covering U of X, the 0th Čech cohomology group
Ȟ

0
(U ,S) is the group Γ(X,S) of global sections:

Ȟ
0
(U ,S) = Γ(X,S)

Proof: Again, we suppose that U is ordered. If f ∈ C0(U ,S), then for U, V in U we have

(df)(U, V ) = f(V )|U ∩ V − f(U)|U ∩ V

or, more tersely,
(df)(U, V ) = f(V )− f(U)

The condition df = 0 would assert that the sections f(U) ∈ Γ(U,S) and f(V ) ∈ Γ(V,S) have the same image
in Γ(U ∩ V,S). From the axioms for a sheaf it follows that all these local sections can be ‘glued together’ to
give a global section. ///

To do computations in terms of derived-functor sheaf cohomology, we must ‘sheafify’ the Čech business,
which we do now. Among other things, this sheafification engenders some exactness properties otherwise
not visible. For a sheaf S and open cover U define

Ci(U ,S) = ΠUo∩...∩Ui
j∗(S|Uo∩...∩Ui

)

where the product is taken over i + 1-fold non-empty intersections

U = Uo ∩ . . . ∩ Ui

of distinct elements of U , and for each such U the map j : U → X is the inclusion. We define the sheafified
coboundary map by the same formula as before, but with this somewhat different meaning: for σ ∈ Ci(U ,S)
we put

(δf)(σ) :=
i+1∑
i=0

(−1)i f(σi)|σ
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Again it is easy to check that δ2 = 0. Let C·(U ,S) denote the complex

C0(U ,S)
δ

→
C1(U ,S)

δ

→
C2(U ,S)

δ

→
C3(U ,S)

δ

→
. . .

From the construction, and from the sheaf axioms, we have

Γ(X, Cq(U ,S)) = Cq(U ,S)

Proposition: For any sheaf S of abelian groups on X, and for any open cover U of X, there is a natural
map ε : S → C0(U ,S) so that C·(U ,S) is a resolution of S, that is, so that we have an exact sequence

0 → S → C0(U ,S)
δ

→
C1(U ,S)

δ

→
. . .

Proof: Define
ε : S → C0(U ,S)

by taking the product of the natural maps
S → j∗(S|U )

for an open J : U → X in the covering U . Then, as in the previous proposition, the sheaf axioms give
exactness at the first joint.

To show exactness at the higher joints, by the sheaf axioms it suffices to show exactness stalk-wise. As usual,
for a sheaf S the stalk at x is denoted by Sx. Fix x ∈ X fix U ∈ U so that x ∈ U . For i ≥ 1 we will define a
map

θ : Ci(U ,S)x → Ci−1(U ,S)x

below which will have the property
δθ + θδ = 1 on Cq(U ,S)x

from which it will follow that the higher joints are exact. (This θ is a fragment of a chain homotopy).

Remarks: Varying the choice of U does affect θ.

We construct θ as follows, depending upon choice of U . For fx ∈ Ci(U ,S)x, choose a section f of this sheaf
on some neighborhood V of x which maps to fx in the direct limit defining the stalk. We may shrink V if
necessary so that V ⊂ U . For Uo, . . . , Ui−1 all in U , define

(θ̃ f)(Uo, . . . , Ui−1) = f(U,Uo, . . . , Ui−1)

Then define θf to be the image of θ̃ f in the stalk at x. This does make sense since

V ∩ U ∩ Uo ∩ . . . ∩ Ui−1 = V ∩ Uo ∩ . . . ∩ Ui−1

and x ∈ V ⊂ U .

The key point is the chain homotopy property

(δθ + θδ)f = f

for f ∈ Ci(U ,S)x with i ≥ 1. To see this, we compute

(θ̃δf)(Uo, . . . , Ui) = (δf)(U,Uo, . . . , Ui) =

= f(Uo, . . . , Ui)−
∑

j

(−1)j f(U,Uo, . . . , Ûj , . . . , Ui) =
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= f(Uo, . . . , Ui)− (δθf)(Uo, . . . , Ui)

as desired.

///

9. Čech-acyclicity of flasque sheaves

Proposition: Let F be a flasque sheaf of abelian groups on a topological space X. Then F is Čech-acyclic:
for any open cover U , for all n > 0 we have Ȟ

n
(X,F) = 0.

Proof: We use the Čech resolution
0 → F → C0(U ,F) → . . .

We claim that for F flasque all the sheaves Cn(U ,F) are also flasque. To see this, first observe that for any
Uo, . . . , Un in U with non-empty intersection U the restriction F|U is still flasque. Let j : U → X be the
inclusion. The image of a flasque sheaf under j∗ is flasque, as is the product of flasque sheaves. Thus, from
the definition of these Čech sheaves, they are flasque if F is flasque. This is the claim.

Then the Čech resolution is acyclic, so can be used to compute the cohomology of F :

Hn(X,F) =
ker δ on Γ(X, Cn(U ,F))

δΓ(X, Cn−1(U ,F))

from the fact that F is a sheaf. On the other hand, from the definition of the Čech cohomology groups,

Ȟ
n
(U ,F) =

ker δ on Γ(X, Cn(U ,F))
δΓ(X, Cn−1(U ,F))

But F itself is also flasque and hence acyclic, so Hn(X,F) = 0. This shows that the Čech groups Ȟ
n
(U ,F)

are zero in positive degrees, also. ///

10. Acyclic covers and comparison of cohomologies

The result here is due to Leray. It asserts that, granting ‘acyclicity’ of an open cover with regard to a given
sheaf, Čech cohomology (with respect to that cover) and right-derived functor cohomology are the same.
Note that the first proposition here holds without any assumption that the sheaf in question be flasque.

The acyclicity of the cover gives us a long exact sequence of the Čech groups, allowing an induction on degree
comparing Čech with sheaf cohomology. This induction is an example of what is called ‘dimension-shifting’.

Proposition: Let X be a topological space, U an open covering of X, and S a sheaf on X. Then for each
n ≥ 0 there is a natural map

Ȟ
n
(U ,S) → Hn(X,S)

which is functorial in S.

Proof: Consider the situation

0 → S → C0(U ,S) → C1(U ,S) → . . .
↓

0 → S → I0 → I1 → . . .
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where the vertical arrow is the identity map on S, where the lower line is an injective resolution of S, and
where the upper line is the Čech resolution. Note that we are not asserting anything about acyclicity of the
Čech resolution in this situation. From the definition of injective, we can extend this diagram to a diagram

0 → S → C0(U ,S) → C1(U ,S) → . . .
↓ ↓ ↓

0 → S → I0 → I1 → . . .

where all the squares commute. That is, we have a morphism of complexes (of sheaves). Further, as usual,
this extension is unique up to chain homotopy. Then, applying the functor Γ(X, ∗) and taking (co-)homology
of the resulting complexes, we obtain the natural map indicated. ///

Let S be a sheaf on a topological space X. Let U be an open cover of X so that, for every Uo, . . . , Un ∈ U ,
and for every i > 0, we have

Hi(Uo ∩ . . . ∩ Un,S|Uo∩...∩Un
) = 0

Then we say that the cover U is acyclic for the sheaf S.

Theorem: Let S be a sheaf on a topological space X, and let U be an open cover of X which is acyclic
for S. Then for all i ≥ 0 the natural maps

Ȟ
i
(U ,S) → Hi(X,S)

(just above) are isomorphisms.

Proof: Since the 0th Čech cohomology is the group of global sections of S, which is the 0th right-derived
functor of the global-sections functor, we have the assertion for i = 0 with or without the acyclicity of U for
S.

For the induction step, imbed S in an injective sheaf I, and let Q be the quotient sheaf: we have a short
exact sequence

0 → S → I → Q → 0

For each non-empty q + 1-fold intersection

U = Uo ∩ . . . ∩ Uq

of elements of the cover U , we obtain a long exact sequence in cohomology (as right-derived functor)

0 → H0(U,S|U ) → H0(U, I|U ) → H0(U,Q|U ) → H1(U,S|U ) → . . .

→ Hi(U,S|U ) → Hi(U, I|U ) → Hi(U,Q|U ) → . . .

By the hypothesis of acyclicity of U for S, H1(U,S|U ) = 0, so, recalling that H0(U, ∗) = Γ(X, ∗), we have
the short exact sequence

0 → Γ(U,S) → Γ(U, I) → Γ(U,Q) → 0

And from the ‘higher’ parts of the long exact sequence, invoking the acyclicity of U for S and the acyclicity
of injective (hence, flasque) sheaves, we conclude that for i > 0 we have

Ȟ
i
(U,Q) = 0

That is, the same cover U is also acyclic for the quotient sheaf Q.

Taking products of these exact sequences, we obtain an exact sequence of complexes

0 → C ·(U ,S) → C ·(U , I) → C ·(U ,Q) → 0
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Obtaining this short exact sequence of sheaves was the point of the assumption of the acyclicity of the cover
for the sheaf S. From this we obtain, as usual, by homological algebra, the long exact sequence of the
(co-)homologies of the complexes. In this setting these cohomologies are the Čech cohomology groups with
respect to the cover U :

0 → Ȟ
0
(U ,S) → Ȟ

0
(U , I) → Ȟ

0
(U ,Q) →

→ Ȟ
1
(U ,S) → Ȟ

1
(U , I) → Ȟ

1
(U ,Q) → . . .

→ Ȟ
i
(U ,S) → Ȟ

i
(U , I) → Ȟ

i
(U ,Q) → . . .

Since I is injective it is flasque. Thus, Ȟ
i
(U , I) = 0 for i > 0, since Čech cohomology groups of flasque

sheaves vanish. Thus, the long exact sequence breaks up into smaller exact sequences

0 → Ȟ
0
(U ,S) → Ȟ

0
(U , I) → Ȟ

0
(U ,Q) → Ȟ

1
(U ,S) → 0

0 → Ȟ
i−1

(U ,Q) → Ȟ
i
(U ,S) → 0

for i > 1.

On the other hand, in (derived-functor) sheaf cohomology we abtain analogous exact sequences from the
long exact sequence arising from

0 → S → I → Q → 0

invoking the injectivity of I. Putting these together via the natural maps of the previous proposition, we
have a commuting diagram with exact rows:

0 → Ȟ
0
(U ,S) → Ȟ

0
(U , I) → Ȟ

0
(U ,Q) → Ȟ

1
(U ,S) → 0

↓ ↓ ↓ ↓
0 → H0(X,S) → H0(X, I) → H0(X,Q) → H1(X,S) → 0

where the vertical arrows are the natural maps from above. Note that the naturality is what assures that
the squares commute.

By diagram-chasing, this implies that Ȟ
1
(U ,S) ≈ H1(X,S) by the natural map. Further, we have

commutative squares
0 → Ȟ

i−1
(U ,Q) → Ȟ

i
(U ,S) → 0

↓ ↓
0 → Hi−1(X,Q) → Hi(X,S) → 0

with exact rows, where the vertical arrows are the natural maps.

Since, as we noted above, the same cover U is acyclic for the quotient Q, by induction we know that
Ȟ

i−1
(U ,Q) = 0. Then, by induction, all the natural maps of the previous proposition must be isomorphisms

of the Čech groups to the derived-functor cohomology groups. ///
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