[08.1] Let R be a principal ideal domain. Let I be a non-zero prime ideal in R. Show that I is maximal.

Suppose that I were strictly contained in an ideal J. Let $I = Rx$ and $J = Ry$, since R is a PID. Then x is a multiple of y, say $x = ry$. That is, $ry \in I$. But y is not in I (that is, not a multiple of p), since otherwise $Ry \subset Rx$. Thus, since I is prime, $r \in I$, say $r = ap$. Then $p = apy$, and (since R is a domain) $1 = ay$. That is, the ideal generated by y contains 1, so is the whole ring R. That is, I is maximal (proper).

[08.2] Let k be a field. Show that in the polynomial ring $k[x, y]$ in two variables the ideal $I = k[x, y] : x + k[x, y] : y$ is not principal.

Suppose that there were a polynomial $P(x, y)$ such that $x = g(x, y) \cdot P(x, y)$ for some polynomial g and $y = h(x, y) \cdot P(x, y)$ for some polynomial h.

An intuitively appealing thing to say is that since y does not appear in the polynomial x, it could not not appear in $P(x, y)$ or $g(x, y)$. Similarly, since x does not appear in the polynomial y, it could not appear in $P(x, y)$ or $h(x, y)$. And, thus, $P(x, y)$ would be in k. It would have to be non-zero to yield x and y as multiples, so would be a unit in $k[x, y]$. Without loss of generality, $P(x, y) = 1$. (Thus, we need to show that I is proper.)

On the other hand, since $P(x, y)$ is supposedly in the ideal I generated by x and y, it is of the form $a(x, y) \cdot x + b(x, y) \cdot y$. Thus, we would have

$$1 = a(x, y) \cdot x + b(x, y) \cdot y$$

Mapping $x \to 0$ and $y \to 0$ (while mapping k to itself by the identity map, thus sending 1 to $1 \neq 0$), we would obtain

$$1 = 0$$

contradiction. Thus, there is no such $P(x, y)$.

We can be more precise about that admittedly intuitively appealing first part of the argument. That is, let’s show that if

$$x = g(x, y) \cdot P(x, y)$$

then the degree of $P(x, y)$ (and of $g(x, y)$) as a polynomial in y (with coefficients in $k[x]$) is 0. Indeed, looking at this equality as an equality in $k(x)[y]$ (where $k(x)$ is the field of rational functions in x with coefficients in k), the fact that degrees add in products gives the desired conclusion. Thus,

$$P(x, y) \in k(x) \cap k[x, y] = k[x]$$

Similarly, $P(x, y)$ lies in $k[y]$, so P is in k.

[08.3] Let k be a field, and let $R = k[x_1, \ldots, x_n]$. Show that the inclusions of ideals

$$Rx_1 \subset Rx_1 + Rx_2 \subset \ldots \subset Rx_1 + \ldots + Rx_n$$

are strict, and that all these ideals are prime.

One approach, certainly correct in spirit, is to say that obviously

$$k[x_1, \ldots, x_n] / Rx_1 + \ldots + Rx_j \approx k[x_{j+1}, \ldots, x_n]$$

The latter ring is a domain (since k is a domain and polynomial rings over domains are domains: proof?) so the ideal was necessarily prime.

But while it is true that certainly x_1, \ldots, x_j go to 0 in the quotient, our intuition uses the explicit construction of polynomials as expressions of a certain form. Instead, one might try to give the allegedly trivial and immediate proof that sending x_1, \ldots, x_j to 0 does not somehow cause 1 to get mapped to 0 in k, nor
accidentally impose any relations on \(x_{j+1}, \ldots, x_n \). A too classical viewpoint does not lend itself to clarifying this. The point is that, given a \(k \)-algebra homomorphism \(f_o : k \to k \), here taken to be the identity, and given values 0 for \(x_1, \ldots, x_j \) and values \(x_{j+1}, \ldots, x_n \) respectively for the other indeterminates, there is a unique \(k \)-algebra homomorphism \(f : k[x_1, \ldots, x_n] \to k[x_{j+1}, \ldots, x_n] \) agreeing with \(f_o \) on \(k \) and sending \(x_1, \ldots, x_n \) to their specified targets. Thus, in particular, we can guarantee that \(1 \in k \) is not somehow accidentally mapped to 0, and no relations among the \(x_{j+1}, \ldots, x_n \) are mysteriously introduced.

[0.8.4] Let \(k \) be a field. Show that the ideal \(M \) generated by \(x_1, \ldots, x_n \) in the polynomial ring \(R = k[x_1, \ldots, x_n] \) is maximal (proper).

We prove the maximality by showing that \(R/M \) is a field. The universality of the polynomial algebra implies that, given a \(k \)-algebra homomorphism such as the identity \(f_o : k \to k \), and given \(\alpha_i \in k \) (take \(\alpha_i = 0 \) here), there exists a unique \(k \)-algebra homomorphism \(f : k[x_1, \ldots, x_n] \to k \) extending \(f_o \). The kernel of \(f \) certainly contains \(M \), since \(M \) is generated by the \(x_i \) and all the \(x_i \) go to 0.

As in the previous exercise, one perhaps should verify that \(M \) is proper, since otherwise accidentally in the quotient map \(R \to R/M \) we might not have \(1 \to 1 \). If we do know that \(M \) is a proper ideal, then by the uniqueness of the map \(f \) we know that \(R \to R/M \) is (up to isomorphism) exactly \(f \), so \(M \) is maximal proper.

Given a relation

\[
1 = \sum_i f_i \cdot x_i
\]

with polynomials \(f_i \), using the universal mapping property send all \(x_i \) to 0 by a \(k \)-algebra homomorphism to \(k \) that does send 1 to 1, obtaining 1 = 0, contradiction.

[0.0.1] Remark: One surely is inclined to allege that obviously \(R/M \approx k \). And, indeed, this quotient is at most \(k \), but one should acknowledge that it not be accidentally 0. Making the point that not only can the images of the \(x_i \) be chosen, but also the \(k \)-algebra homomorphism on \(k \), decisively eliminates this possibility.

[0.8.5] Show that the maximal ideals in \(R = \mathbb{Z}[x] \) are all of the form

\[
I = R \cdot p + R \cdot f(x)
\]

where \(p \) is a prime and \(f(x) \) is a monic polynomial which is irreducible modulo \(p \).

Suppose that no non-zero integer \(n \) lies in the maximal ideal \(I \) in \(R \). Then \(\mathbb{Z} \) would inject to the quotient \(R/I \), a field, which then would be characteristic 0. Then \(R/I \) would contain a canonical copy of \(\mathbb{Q} \). Let \(\alpha \) be the image of \(x \) in \(K \). Then \(K = \mathbb{Z}[\alpha] \), so certainly \(K = \mathbb{Q}[\alpha] \), so \(\alpha \) is algebraic over \(\mathbb{Q} \), say of degree \(n \). Let \(f(x) = a_n x^n + \ldots + a_1 x + a_0 \) be a polynomial with rational coefficients, such that \(f(\alpha) = 0 \), and with all denominators multiplied out to make the coefficients integral. Then let \(\beta = c_n \alpha \); this \(\beta \) is still algebraic over \(\mathbb{Q} \), so \(\mathbb{Q}[\beta] = \mathbb{Q}(\beta) \), and certainly \(\mathbb{Q}(\beta) = \mathbb{Q}(\alpha) \), and \(\mathbb{Q}(\alpha) = \mathbb{Q}[\alpha] \). Thus, we still have \(K = \mathbb{Q}[\beta] \), but now things have been adjusted so that \(\beta \) satisfies a monic equation with coefficients in \(\mathbb{Z} \): from

\[
0 = f(\alpha) = f(\frac{\beta}{c_n}) = c_n^{1-n} \beta^n + c_{n-1}c_n^{-n} \beta^{n-1} + \ldots + c_1 c_n^{-n-1} \beta + c_0
\]

we multiply through by \(c_n^{n-1} \) to obtain

\[
0 = \beta^n + c_{n-1} \beta^{n-1} + c_{n-2} c_n \beta^{n-2} + c_{n-3} c_n^2 \beta^{n-3} + \ldots + c_2 c_n^{n-3} \beta^2 + c_1 c_n^{n-2} \beta + c_0 c_n^{n-1}
\]

Since \(K = \mathbb{Q}[\beta] \) is an \(n \)-dimensional \(Q \)-vectorspace, we can find rational numbers \(b_i \) such that

\[
\alpha = b_0 + b_1 \beta + b_2 \beta^2 + \ldots + b_{n-1} \beta^{n-1}
\]
Paul Garrett: (January 14, 2009)

Let \(N \) be a large-enough integer such that for every index \(i \) we have \(b_i \in \frac{1}{N} \cdot \mathbb{Z} \). Note that because we made \(\beta \) satisfy a monic integer equation, the set
\[
\Lambda = \mathbb{Z} + \mathbb{Z} \cdot \beta + \mathbb{Z} \cdot \beta^2 + \ldots + \mathbb{Z} \cdot \beta^{n-1}
\]
is closed under multiplication: \(\beta^n \) is a \(\mathbb{Z} \)-linear combination of lower powers of \(\beta \), and so on. Thus, since \(\alpha \in N^{-1} \Lambda \), successive powers \(\alpha^\ell \) of \(\alpha \) are in \(N^{-\ell} \Lambda \). Thus,
\[
\mathbb{Z}[\alpha] \subset \bigcup_{\ell \geq 1} N^{-\ell} \Lambda
\]

But now let \(p \) be a prime not dividing \(N \). We claim that \(1/p \) does not lie in \(\mathbb{Z}[\alpha] \). Indeed, since \(1, \beta, \ldots, \beta^{n-1} \) are linearly independent over \(\mathbb{Q} \), there is a unique expression for \(1/p \) as a \(\mathbb{Q} \)-linear combination of them, namely the obvious \(\frac{1}{p} = \frac{1}{p} \cdot 1 \). Thus, \(1/p \) is not in \(N^{-\ell} \cdot \Lambda \) for any \(\ell \in \mathbb{Z} \). This (at last) contradicts the supposition that no non-zero integer lies in a maximal ideal \(I \) in \(\mathbb{Z}[x] \).

Note that the previous argument uses the infinitude of primes.

Thus, \(\mathbb{Z} \) does not inject to the field \(R/I \), so \(R/I \) has positive characteristic \(p \), and the canonical \(\mathbb{Z} \)-algebra homomorphism \(\mathbb{Z} \to R/I \) factors through \(\mathbb{Z}/p \). Identifying \(\mathbb{Z}[x]/p \approx (\mathbb{Z}/p)[x] \), and granting (as proven in an earlier homework solution) that for \(J \subset I \) we can take a quotient in two stages
\[
R/I \cong (R/J)/(\text{image of } J \text{ in } R/I)
\]

Thus, the image of \(I \) in \((\mathbb{Z}/p)[x] \) is a maximal ideal. The ring \((\mathbb{Z}/p)[x] \) is a PID, since \(\mathbb{Z}/p \) is a field, and by now we know that the maximal ideals in such a ring are of the form \(\langle f \rangle \) where \(f \) is irreducible and of positive degree, and conversely. Let \(F \in \mathbb{Z}[x] \) be a polynomial which, when we reduce its coefficients modulo \(p \), becomes \(f \). Then, at last,
\[
I = \mathbb{Z}[x] \cdot p + \mathbb{Z}[x] \cdot f(x)
\]
as claimed.

[08.6] Let \(R \) be a PID, and \(x, y \) non-zero elements of \(R \). Let \(M = R/(x) \) and \(N = R/(y) \). Determine \(\text{Hom}_R(M,N) \).

Any homomorphism \(f : M \to N \) gives a homomorphism \(F : R \to N \) by composing with the quotient map \(q : R \to M \). Since \(R \) is a free \(R \)-module on one generator 1, a homomorphism \(F : R \to N \) is completely determined by \(F(1) \), and this value can be anything in \(N \). Thus, the homomorphisms from \(R \) to \(N \) are exactly parametrized by \(F(1) \in N \). The remaining issue is to determine which of these maps \(F \) factor through \(M \), that is, which such \(F \) admit \(f : M \to N \) such that \(F = f \circ q \). We could try to define (and there is no other choice if it is to succeed)
\[
f(r + Rx) = F(r)
\]
but this will be well-defined if and only if \(\ker F \supset Rx \).

Since \(0 = y \cdot F(r) = F(yr) \), the kernel of \(F : R \to N \) invariably contains \(Ry \), and we need it to contain \(Rx \) as well, for \(F \) to give a well-defined map \(R/Rx \to R/Ry \). This is equivalent to
\[
\ker F \supset Rx + Ry = R \cdot \gcd(x,y)
\]
or
\[
F(\gcd(x,y)) = \{0\} \subset R/Ry = N
\]

By the \(R \)-linearity,
\[
R/Ry \supset 0 = F(\gcd(x,y)) = \gcd(x,y) \cdot F(1)
\]

3
Thus, the condition for well-definedness is that

\[y \in R : \frac{y}{\gcd(x, y)} \in R / Ry \]

Therefore, the desired homomorphisms \(f \) are in bijection with

\[F(1) \in R : \frac{y}{\gcd(x, y)} / Ry \subset R / Ry \]

where

\[f(r + Rx) = F(r) = r \cdot F(1) \]

[08.7] *(A warm-up to Hensel's lemma)* Let \(p \) be an odd prime. Fix \(a \not\equiv 0 \pmod{p} \) and suppose \(x^2 = a \pmod{p} \) has a solution \(x_1 \). Show that for every positive integer \(n \) the congruence \(x^2 = a \pmod{p^n} \) has a solution \(x_n \). *(Hint: Try \(x_{n+1} = x_n + p^ny \) and solve for \(y \pmod{p} \)).*

Induction, following the hint: Given \(x_n \) such that \(x_n^2 = a \pmod{p^n} \), with \(n \geq 1 \) and \(p \neq 2 \), show that there will exist \(y \) such that \(x_{n+1} = x_n + yp^n \) gives \(x_{n+1}^2 = a \pmod{p^{n+1}} \). Indeed, expanding the desired equality, it is equivalent to

\[a = x_{n+1}^2 = x_n^2 + 2x_n p^ny + p^{2n}y^2 \pmod{p^{n+1}} \]

Since \(n \geq 1, 2n \geq n + 1 \), so this is

\[a = x_n^2 + 2x_n p^ny \pmod{p^{n+1}} \]

Since \(a - x_n^2 = k \cdot p^n \) for some integer \(k \), dividing through by \(p^n \) gives an equivalent condition

\[k = 2x_ny \pmod{p} \]

Since \(p \neq 2 \), and since \(x_n^2 = a \not\equiv 0 \pmod{p} \), \(2x_n \) is invertible \(\pmod{p} \), so no matter what \(k \) is there exists \(y \) to meet this requirement, and we're done.

[08.8] *(Another warm-up to Hensel's lemma)* Let \(p \) be a prime not 3. Fix \(a \not\equiv 0 \pmod{p} \) and suppose \(x^3 = a \pmod{p} \) has a solution \(x_1 \). Show that for every positive integer \(n \) the congruence \(x^3 = a \pmod{p^n} \) has a solution \(x_n \). *(Hint: Try \(x_{n+1} = x_n + p^ny \) and solve for \(y \pmod{p} \)).*

Induction, following the hint: Given \(x_n \) such that \(x_n^3 = a \pmod{p^n} \), with \(n \geq 1 \) and \(p \neq 3 \), show that there will exist \(y \) such that \(x_{n+1} = x_n + yp^n \) gives \(x_{n+1}^3 = a \pmod{p^{n+1}} \). Indeed, expanding the desired equality, it is equivalent to

\[a = x_{n+1}^3 = x_n^3 + 3x_n^2 p^ny + 3x_n p^{2n}y^2 + p^{3n}y^3 \pmod{p^{n+1}} \]

Since \(n \geq 1, 3n \geq n + 1 \), so this is

\[a = x_n^3 + 3x_n^2 p^ny \pmod{p^{n+1}} \]

Since \(a - x_n^3 = k \cdot p^n \) for some integer \(k \), dividing through by \(p^n \) gives an equivalent condition

\[k = 3x_n^2 y \pmod{p} \]

Since \(p \neq 3 \), and since \(x_n^3 = a \not\equiv 0 \pmod{p} \), \(3x_n^2 \) is invertible \(\pmod{p} \), so no matter what \(k \) is there exists \(y \) to meet this requirement, and we're done.