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1. Uniqueness

Among other things, the following result justifies speaking of the field with pn elements (for prime p and
integer n), since, we prove, these parameters completely determine the isomorphism class.

[1.0.1] Theorem: Given a prime p and an integer n, there is exactly one (up to isomorphism) finite field
Fpn with pn elements. Inside a fixed algebraic closure of Fp, the field Fpm lies inside Fpn if and only if m|n.
In particular, Fpn is the set of solutions of

xpn

− x = 0

inside an algebraic closure of Fp.

Proof: Let E be an algebraic closure of Fp. Let F (x) = xpn − x in Fp[x]. The algebraic derivative of F
is −1, so gcd(F, F ′) = 1, and F has no repeated factors. Let K = Fp(α1, . . . , αpn) be the subfield of E
generated over Fp by the roots of F (x) = 0, which we know are exactly the pn distinct αis occuring as linear
factors x− αi in F (x). [1]

Perhaps unsurprisingly, we claim that K is exactly the set of all the roots of F (x) = 0. Naturally we use the
fact [2] that binomial coefficients

(
p
i

)
are 0 in characteristic p, for 0 < i < p. Thus,

(α+ β)pn

= (. . . ((α+ β)p)p . . .)p = αpn

+ βpn

In particular, if αpn

= α and βpn

= β, then α+ β has the same property. And even more obviously

(α · β)pn

= αpn

· βpn

= α · β

[1] Later we would say that K is a splitting field for F since F factors into linear factors in K.

[2] As in the most pedestrian proof of Fermat’s Little Theorem.
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132 Finite fields

Additive inverses of roots of F (x) = 0 are present in the collection of roots, because α + β = 0 implies
αpn

+βpn

= 0. Far more simply, certainly non-zero roots have multiplicative inverses among the roots. And
0 is among the roots. Finally, because αp = α for α ∈ Fp, certainly Fp is a subset of the set of roots.

In summary, the smallest subfield K (of some algebraic closure E of Fp) containing the roots of xpn −x = 0
is exactly the set of all roots, and K contains Fp. Thus, K has exactly pn elements. This proves existence
of a field with pn elements.

For uniqueness (up to isomorphism) of a field with pn elements, it suffices to prove that inside a given
algebraic closure E of Fp there is exactly one such field, since [3] any algebraic extension L of Fp can be
mapped injectively to E (by an injection that is the identity on Fp). For L of degree n over Fp, necessarily
L× is of order pn − 1. That is, the non-zero elements of L× all satisfy xpn−1 − 1 = 0. [4] Thus, adding a
factor of x, all elements of L are roots of xpn − x = 0. Thus, with L sitting inside the fixed algebraic closure
E of Fp, since a degree pn equation has at most pn roots in E, the elements of L must be just the field K
constructed earlier. [5] This proves uniqueness (up to isomorphism). [6]

Inside a fixed algebraic closure of Fp, if Fpm ⊂ Fpn then the larger field is a vector space over the smaller.
Given a basis e1, . . . , et, every element of the larger field is uniquely expressible as

∑
i ciei with ci in the

smaller field, so there are (pm)t elements in the larger field. That is, n = mt, so m|n. Conversely, if m|n,
then the roots of xpm−1 − 1 = 0 are among those of xpn−1 − 1 = 0. We have identified F×pm as the set of
roots of xpm−1 − 1 = 0 inside a fixed algebraic closure, and similarly for F×pn , so Fpm ⊂ Fpn . ///

[3] By part of the main theorem on algebraic closures.

[4] By Lagrange. In fact, we know that the multiplicative group is cyclic, but this is not used.

[5] For non-finite fields, we will not be able to so simply or completely identify all the extensions of the prime field.

[6] Note that we do not at all assert any uniqueness of the isomorphism between any two such fields. To the contrary,

there will be several different isomorphisms. This is clarified just below, in discussion of the Frobenius automorphisms.
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2. Frobenius automorphisms

Let q be a power of a prime p, and let E be an algebraic closure of Fq. [7] For α ∈ E, the Frobenius
automorphism (depending on q) is

F (α) = αq

[2.0.1] Proposition: For fixed prime power q and algebraic closure E of finite field Fq, the Frobenius
map F : α −→ αq is the identity map on Fq, and stabilizes any overfield K of Fq inside E. Further, if β ∈ E
has the property that Fβ = β, then β ∈ Fq. Generally, the fixed points of α −→ αqn

make up the field Fqn

inside E.

Proof: Certainly F (αβ) = F (α)F (β). Since the characteristic is P , also (α + β)p = αp + βp, and F truly
is a field homomorphism of E to itself.

Since any subfield K of E is stable under taking powers, certainly F maps K to itself.

By now we know that F×qn is cyclic, and consists exactly of the roots of xqn−1 − 1 = 0 in E. That is, Fqn is
exactly the roots of xqn − x = 0. That is, the fixed points of Fn are exactly Fqn , as claimed. ///

[2.0.2] Proposition: Let f(x) be a polynomial with coefficients in Fq. Let α ∈ K be a root (in a fixed
algebraic closure E of Fq) of the equation f(x) = 0. Then F (α) = αq, F 2(α) = F (F (α)) = αq2

, . . . are also
roots of the equation.

Proof: Let f have coefficients

f(x) = cnx
n + cn−1x

n−1 + . . .+ c2x
2 + c1x+ c0

with all the ci’s in Fq. Apply the Frobenius map to both sides of the equation

0 = cnα
n + cn−1α

n−1 + . . .+ c2α
2 + c1α+ c0

to obtain

F (0) = F (cn)F (α)n + F (cn−1)F (α)n−1 + . . .+ F (c2)F (α)2 + F (c1)F (α) + F (c0)

since F is a field homomorphism. The coefficients ci are in Fq, as is the 0 on the left-hand side, so F does
not change them. Thus,

0 = cnF (α)n + cn−1F (α)n−1 + . . .+ c2F (α)2 + c1F (α) + c0

That is,
0 = f(F (α))

and F (α) is a root of P (x) = 0 if α is. ///

[2.0.3] Proposition: Let
A = {α1, . . . , αt}

be a set of (t distinct) elements of and algebraic closure E of Fq, with the property that for any α in A,
F (α) is again in A. Then the polynomial

(x− α1)(x− α2) . . . (x− αt)

[7] We take the liberty of considering not only Fp but any finite field Fq to be at the bottom of whatever towers of

fields we consider. This is a simple case of Galois theory, which studies automorphisms of general fields.
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(when multiplied out) has coefficients in k.

Proof: For a polynomial

f(x) = cnx
n + cn−1x

n−1 + . . .+ c2x
2 + c1x+ c0

with coefficients in E, define a new polynomial F (f) by letting the Frobenius F act on the coefficients

F (f)(x) = F (cn)xn + F (cn−1)xn−1 + . . .+ F (c2)x2 + F (c1)x+ F (c0)

This action gives a Fq-algebra homomorphism Fq[x] −→ Fq[x]. Applying F to the product

(x− α1)(x− α2) . . . (x− αt)

merely permutes the factors, by the hypothesis that F permutes the elements of A. Thus,

cnx
n + cn−1x

n−1 + . . .+ c1x+ c0 = (x− α1)(x− α2) . . . (x− αt)

= (x− Fα1)(x− Fα2) . . . (x− Fαt) = F (cn)xn + F (cn−1)xn−1 + . . .+ F (c1)x+ F (c0)

Equality of polynomials is coefficient-wise equality, so F (ci) = ci for all indices i. ///

[2.0.4] Corollary: Let α be an element of an algebraic closure E of Fq. Suppose that [Fq(α) : Fq] = n.
Then the minimal polynomial M(x) of α is

M(x) = (x− α)(x− F (α))(x− F 2(α)) . . . (x− Fn−1(α))

Proof: By definition of the minimal polynomial, M is the unique monic polynomial in Fq[x] such that any
other polynomial in Fq[x] of which α is a zero is a polynomial multiple of M . Since α generates a degree n
extension of Fq, from above Fnα = α. Thus, the set α, Fα, F 2α, . . ., Fn−1α is F -stable, and the right-hand
side product (when multiplied out) has coefficients in Fq. Thus, it is a polynomial multiple of M . Since it
is monic and has degree n (as does M), it must be M itself. ///

Given ground field Fq and α in an algebraic extension E of Fq, the images

α, αq, αq2
, . . .

of α under the Frobenius are the (Galois) conjugates of α over Fq. Indeed, the notion of Frobenius
automorphism is relative to the ground field Fq. Two elements α, β in an algebraic extension E of Fq are
conjugate if

β = αqt

for some power F t of the Frobenius over Fq.

[2.0.5] Proposition: Inside a given algebraic extension E of Fq, the property of being conjugate is an
equivalence relation. ///

[2.0.6] Corollary: Given α in an algebraic field extension E of Fq, the number of distinct conjugates of
α over Fq is equal to the degree [Fq(α) : Fq]. ///

[2.0.7] Corollary: Let f(x) ∈ Fq[x] be irreducible, of degree n. Then f(x) factors into linear factors in
Fqn , (up to isomorphism) the unique extension of Fq of degree n. ///

Fix a prime power q, and an integer n. The set

= AutFq Fqn = { automorphisms h : Fqn −→ Fqn trivial on Fq}
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is a group, with operation composition. [8]

[2.0.8] Theorem: The group G = AutFq
Fqn of automorphisms of Fqn trivial on Fq is cyclic of order n,

generated by the Frobenius element F (α) = αq.

Proof: First, we check that the Frobenius map is a field automorphism. It certainly preserves multiplication.
Let p be the prime of which q is a power. Then p divides all the inner binomial coefficients

(
q
i

)
with 0 < i < q,

essentially because p divides all the inner binomial coefficients
(
p
i

)
with 0 < i < p. Thus, for α, β ∈ Fqn , by

the binomial expansion,

(α+ β)q = αq +
∑

0<i<q

(
q

i

)
αi βq−i + βq = αq + βq

We should show that Frobenious does fix Fq pointwise. Since F×q has order q − 1, every element has order
dividing q − 1, by Lagrange. Thus, for β ∈ Fq,

βq = βq−1 · β = 1 · β = β

Certainly 0 is mapped to itself by Frobenius, so Frobenius fixes Fq pointwise, and, therefore, is a field
automorphism of Fqn over Fq. Last, note that Fn fixes Fqn pointwise, by the same argument that just
showed that F fixes Fq pointwise. That is, Fn is the identity automorphism of Fqn . We note that F is
invertible on Fqn , for any one of several reasons. One argument is that Fn is the identity.

The powers of the Frobenius element clearly form a subgroup of the automorphism group G, so the question
is whether every automorphism is a power of Frobenius. There are many ways to approach this, but one
straightforward way is as follows. We have seen that the multiplicative group F×qn is cyclic. Let α be a
generator. Any field automorphism σ of F×qn is completely determined by σα, since a field map preserves
multiplication, and, therefore,

σ(αn) =
(
σ(α)

)n

And we know that the only possible images of σα are the other roots in Fqn of the monic irreducible f(x)
of α in Fq[x], which is of degree n, since we know that

Fqn ≈ Fq[x]/f

That is, there are at most n possible images σα of α, including α itself. Let’s count the number of distinct
images of α under powers of Frobenious. First, for i < j, using the invertibility of F , F iα = F jα is equivalent
to α = F j−iα. Thus, it suffices to determine the smallest positive exponent j such that F jα = α. In fact,
being the generator of the cyclic group F×qn , α has order exactly qn − 1. Thus, the positive powers of α of
orders less than qn − 1 are distinct. Thus, αq`

= α implies αq`−1 = 1, and then

qn − 1 divides q` − 1

Thus, it must be that ` = n. This shows that α, Fα, F 2α, . . ., Fn−1α are distinct, and therefore are all
the possible images of α by automorphisms. We noted that the image of α by an automorphism determines
that automorphism completely, so 1, F, F 2, . . . , Fn−1 are all the automorphisms of Fqn over Fq. ///

3. Counting irreducibles
[8] As usual, an automorphism of a thing is an isomorphism of it to itself, of whatever sort is currently under

discussion. Here, we are concerned with field isomorphisms of Fqn to itself which fix Fq pointwise. In general,

with some further hypotheses to avoid various problems, roughly speaking the automorphism group of one field over

another is a Galois group.
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By now we might anticipate that counting irreducible polynomials f(x) ∈ Fq[x] of degree n is intimately
connected with elements α [9] such that [Fq(α) : Fq] = n, by taking roots α of f(x) = 0.

[3.0.1] Proposition: The collection of monic irreducible polynomials f(x) of degree n in Fq[x] is in
bijection with sets of n mutually conjugate generators of Fqn over Fq, by

α, αq, . . . , αqn−1
←→ (x− α)(x− αq) . . . (x− αqn−1

)

Proof: On one hand, a degree n monic irreducible f has a root α in Fq[x]/〈f〉, which is a degree n field
extension of Fq. In particular, Fq(α) = Fq[α] is of degree n over Fq. And (from just above)

f(x) = (x− α)(x− αq)(x− αq2
) . . . (x− αqn−1

)

We have noted that the n distinct images αqi

are an equivalence class under the equivalence relation of being
conjugate, and any one of these roots generates the same degree n extension as does α.

On the other hand, let α generate the unique degree n extension of Fq inside a fixed algebraic closure. That
is, Fq(α) = Fq[α] is of degree n over Fq, which implies that the minimal polynomial f of α over Fq is of
degree n. From above, the other roots of f(x) = 0 are exactly the conjugates of α over Fq. ///

Let µ(n) be the Möbius function

µ(n) =
{

0 (if the square of any prime divides n)
(−1)t (otherwise, where distinct primes divide n, but no square does)

[3.0.2] Corollary: The number of irreducible degree n polynomials in Fq[x] is

number irreducibles degree n =
1
n
·

∑
d|n

µ(d) qn/d



Proof: We want to remove from Fqn the elements which generate (over Fq) proper subfields of Fqn , and
then divide by n, the number of conjugates of a given generator of Fqn over Fq. Above we showed that
Fqm ⊂ Fqn if and only if m|n. Thus, the maximal proper subfields of Fqn are the fields Fqn/r with r a prime
dividing n. But the attempted count qn −

∑
r|n q

n/r over-counts the intersections of subfields Fqn/r1 and
Fqn/r2 , for primes r1 6= r2. Thus, typically, we put back qn/r1r2 , but we have put back too much, and must
subtract the common triple intersections, and so on. After this inclusion-exclusion process, we divide by n
so that we count equivalence classes of mutually conjugate generators of the degree n extension, rather than
the individual generators. ///

Exercises

9.[3.0.1] Show that any root α of x3 + x + 1 = 0 in an algebraic closure of the finite field F2 with 2
elements is a generator for the multiplicative group F×23 .

9.[3.0.2] Find the irreducible quartic equation with coefficients in F2 satisfied by a generator for the cyclic
group F×24 .

[9] In a fixed algebraic closure of Fq, for example.



Garrett: Abstract Algebra 137

9.[3.0.3] Let f be an irreducible polynomial of degree n in Fq[x], where Fq is a field with q elements.
Show that f(x) divides xqn − x if and only if deg f divides n.

9.[3.0.4] Show that the general linear group GLn(Fq) of invertible matrices with entries in the finite field
Fq has an element of order qn − 1.

9.[3.0.5] Let k be a finite field. Show that k[x] contains irreducibles of every positive integer degree.

9.[3.0.6] For a power q of a prime p, find a p-Sylow subgroup of GLn(Fq).

9.[3.0.7] For q a power of an odd prime p, find a 2-Sylow subgroup of GL2(Fq).

9.[3.0.8] For q a power of an odd prime p, find a 2-Sylow subgroup of GL3(Fq).

9.[3.0.9] Find a 3-Sylow subgroup of GL3(F7).

9.[3.0.10] (Artin-Schreier polynomials) Let q be a power of a prime p. Take a 6= 0 in Fq. Show that if α
is a root of xp − x+ a = 0 then so is α+ i for i = 1, 2, . . . , p− 1.

9.[3.0.11] Show that Artin-Schreier polynomials are irreducible in Fq[x].


