12. Polynomials over UFDs

12.1 Gauss’ lemma
12.2 Fields of fractions
12.3 Worked examples

The goal here is to give a general result which has as corollary that that rings of polynomials in several
variables
k:[xl, [N ,a:n]

with coefficients in a field k are unique factorization domains in a sense made precise just below. Similarly,
polynomial rings in several variables
Zlx1, ... o)

with coefficients in Z form a unique factorization domain. [1]

1. Gauss’' lemma

A factorization of an element 7 into irreducibles in an integral domain R is an expression for r of the form
r=u-pit...pon

where u is a unit, p; through p,, are non-associate 2 irreducible elements, and the e;s are positive integers.
Two factorizations
— €1 e
r=u-pj...por

r:v~q{1...q£"

(1] Among other uses, these facts are used to discuss Vandermonde determinants, and in the proof that the parity

(or sign) of a permutation is well-defined.

2l Recall that two elements x,y of a commutative ring R are associate if x = yu for some unit v in R. This
terminology is most often applied to prime or irreducible elements.
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182 Polynomials over UFDs

into irreducibles p; and ¢; with units u,v are equivalent if m = n and (after possibly renumbering the
irreducibles) ¢; is associate to p; for all indices i. A domain R is a unique factorization domain (UFD)
if any two factorizations are equivalent.

[1.0.1] Theorem: (Gauss) Let R be a unique factorization domain. Then the polynomial ring in one
variable R[z] is a unique factorization domain.

[1.0.2] Remark: The proof factors f(z) € R[z] in the larger ring k[x] where k is the field of fractions of R
(see below), and rearranges constants to get coefficients into R rather than k. Uniqueness of the factorization
follows from uniqueness of factorization in R and uniqueness of factorization in k[x].

[1.0.3] Corollary: A polynomial ring k[z1,...,,] in a finite number of variables z1, ..., ,, over a field
k is a unique factorization domain. (Proof by induction.) ///
[1.0.4] Corollary: A polynomial ring Z[zy,...,z,] in a finite number of variables zy, ..., x, over the
integers Z is a unique factorization domain. (Proof by induction.) ///

Before proving the theorem itself, we must verify that unique factorization recovers some naive ideas about
divisibility. Recall that for r,s € R not both 0, an element g € R dividing both r and s such that any divisor
d of both r and s also divides g, is a greatest common divisor of r and s, denoted g = ged(r, s).

[1.0.5] Proposition: Let R be a unique factorization domain. For 7,s in R not both 0 there exists
ged(r, s) unique up to an element of R*. Factor both r and s into irreducibles

r=u-pit...pom s:v-pfl...pf;;

where u and v are units and the p; are mutually non-associate irreducibles (allow the exponents to be 0, to
use a common set of irreducibles to express both r and s). Then the greatest common divisor has exponents
which are the minima of those of r and s

min (e1,f1) . .pﬁin (€msfm)

ged(r, s) = p;

Proof: Let
g= p;nin (e1,f1) - .pigin(emjm)

First, g does divide both r and s. On the other hand, let d be any divisor of both r and s. Enlarge the
collection of inequivalent irreducibles p; if necessary such that d can be expressed as

h
d:uwpll...pglm

with unit w and non-negative integer exponents. From d|r there is D € R such that dD = r. Let
DZW-pfh...pgm

Then

wW - pltHL L phet e — gD ==y p$ L pEm

Unique factorization and non-associateness of the p; implies that the exponents are the same: for all i

Thus, h; < e;. The same argument applies with 7 replaced by s, so h; < f;, and h; < min (e;, f;). Thus, d|g.
For uniqueness, note that any other greatest common divisor h would have g|h, but also h|r and h|s. Using
the unique (up to units) factorizations, the exponents of the irreducibles in g and h must be the same, so ¢
and h must differ only by a unit. ///
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[1.0.6] Corollary: Let R be a unique factorization domain. For 7 and s in R, let g = gcd(r, s) be the
greatest common divisor. Then ged(r/g, s/g) = 1. ///

2. Fields of fractions

The field of fractions k of an integral domain R is the collection of fractions a/b with a,b € R and b # 0
and with the usual rules for addition and multiplication. More precisely, & is the set of ordered pairs (a,b)
with a,b € R and b # 0, modulo the equivalence relation that

(a, b) ~ (e, d)
if and only if ad — be = 0. B Multiplication and addition are [*]
(a,b) - (¢,d) = (ac,bd)

(a,b) + (c,d) = (ad + be, bd)

The map R — k by r — (r,1)/ ~ is readily verified to be a ring homomorphism. 1 Write a/b rather
than (a,b)/ ~. When R is a unique factorization ring, whenever convenient suppose that fractions a/b are
in lowest terms, meaning that ged(a,b) = 1.

Extend the notions of divisibility to apply to elements of the fraction field k of R. [¢] First, say that x|y
for two elements z and y in k if there is 7 € R such that s = rz. [l  And, for 71, ..., 7, in k, not all 0,
a greatest common divisor ged(ry,...,r,) is an element g € k such that g divides each r; and such that if
d € k divides each r; then d|g.

[2.0.1] Proposition: In the field of fractions k of a unique factorization domain R (extended) greatest
common divisors exist.

Pmof: We reduce this to the case that everything is inside R. Given elements x; = a;/b; in k with a; and
b; all in R, take 0 # r € R such that rz; € R for all i. Let G be the greatest common divisor of the rz;, and
put g = G/r. We claim this g is the greatest common divisor of the x;. On one hand, from G|rz; it follows
that g|z;. On the other hand, if d|z; then rd|raz;, so rd divides G = rg and d|g. ///

The content cont(f) of a polynomial f in k[z] is the greatest common divisor [¥] of the coefficients of f.

[2.0.2] Lemma: (Gauss) Let f and g be two polynomials in k[z]. Then

cont(fg) = cont(f) - cont(g)

B8] This corresponds to the ordinary rule for equality of two fractions.
[l As usual for fractions.

(3] The assumption that R is a domain, is needed to make this work so simply. For commutative rings (with 1) with
y g

proper 0O-divisors the natural homomorphism r — (r, 1) of the ring to its field of fractions will not be injective. And

this construction will later be seen to be a simple extreme example of the more general notion of localization of rings.

(6] Of course notions of divisibility in a field itself are trivial, since any non-zero element divides any other. This is
not what is happening now.

["l' For non-zero r in the domain R, rz|ry if and only if z|y. Indeed, if ry = m - rz then by cancellation (using the
domain property), y = m - z. And y = m -z implies ry = m - rz directly.

(8] The values of the content function are only well-defined up to units R*. Thus, Gauss’ lemma more properly
concerns the equivalence classes of irreducibles dividing the respective coefficients.
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Proof: From the remark just above for any ¢ € k*

cont(c- f) = ¢ cont(f)
Thus, since

a b
(gcd(a,b)7 gcd(a,b)) =1

ged

without loss of generality cont(f) = 1 and cont(g) = 1. Thus, in particular, both f and g have coefficients
in the ring R. Suppose cont(fg) # 1. Then there is non-unit irreducible p € R dividing all the coefficients
of fg. Put

f(x) =ag + a1z + axx® + ...

g(x) = bo + brx + boz® + ...

But p does not divide all the coefficients of f, nor all those of g. Let ¢ be the smallest integer such that p
does not divide a;, j the largest integer such that p does not divide b;, and consider the coefficient of 21
in fg. It is

aobi+j + albiij,l + ...+ aiflbjfl + al—bj + ai+1bj,1 + ...+ ai+j71b1 + aiﬂ-bo

In summands to the left of a;b; the factor a; with k < 7 is divisible by p, and in summands to the right of
a;b; the factor by with k < j is divisible by p. This leaves only the summand a;b; to consider. Since the
whole sum is divisible by p, it follows that p|a;b;. Since R is a unique factorization domain, either pla; or
plb;, contradiction. Thus, it could not have been that p divided all the coefficients of fg. ///

[2.0.3] Corollary: Let f be a polynomial in R[z]. If f factors properly in k[z] then f factors properly
in R[z]. More precisely, if f factors as f = g-h with g and h polynomials in k[z] of positive degree, then
there is ¢ € k* such that cg € R[z] and h/c € R[z], and

f=(cg)-(h/c)
is a factorization of f in R[z].

Proof: Since f has coefficients in R, cont(f) is in R. By replacing f by f/c we may suppose that cont(f) = 1.
By Gauss’ lemma
cont(g) - cont(h) = cont(f) =1

Let ¢ = cont(g). Then cont(h) = 1/¢, and cont(g/c) = 1 and cont(c- h) =1, so g/c and ch are in R[z], and
(g/c) - (ch) = f. Thus f is reducible in R[x]. ///

[2.0.4] Corollary: The irreducibles in R[z] are of two sorts, namely irreducibles in R and polynomials
f in R[z] with cont(f) = 1 which are irreducible in k[z].

Proof: If an irreducible p in R factored in R[z] as p = gh, then the degrees of g and h would be 0, and g
and h would be in R. The irreducibility of p in R would imply that one of g or h would be a unit. Thus,
irreducibles in R remain irreducible in R[z].

Suppose p was irreducible in R[z] of positive degree. If g = cont(p) was a non-unit, then p = (p/g) - g would
be a proper factorization of p, contradiction. Thus, cont(p) = 1. The previous corollary shows that p is
irreducible in k[z].

Last suppose that f is irreducible in k[z], and has cont(f) = 1. The irreducibility in k[z] implies that if
f = gh in R[z] then the degree one of g or h must be 0. Without loss of generality suppose degg = 0, so
cont(g) = g. Since

1 = cont(f) = cont(g)cont(h)
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g is a unit in R, so f = gh is not a proper factorization, and f is irreducible in R[z]. ///

Proof: (of theorem) We can now combine the corollaries of Gauss’ lemma to prove the theorem. Given a
polynomial f in Rz], let ¢ = cont(f), so from above cont(f/c) = 1. The hypothesis that R is a unique
factorization domain allows us to factor w into irreducibles in R, and we showed just above that these
irreducibles remain irreducible in R[x].

Replace f by f/cont(f) to assume now that cont(f) = 1. Factor f into irreducibles in k[z] as
f:u.pil ...pfnm

where u is in k%, the p;s are irreducibles in k[z], and the e;s are positive integers. We can replace each p;
by p;/cont(p;) and replace u by
w - cont(py)® -+ - cont(py, )™

so then the new p;s are in R[z] and have content 1. Since content is multiplicative, from cont(f) = 1 we find
that cont(u) = 1, so w is a unit in R. The previous corollaries demonstrate the irreducibility of the (new)
p;s in Rx], so this gives a factorization of f into irreducibles in R[z]. That is, we have an explicit ezistence
of a factorization into irreducibles.

Now suppose that we have two factorizations

In

:{1.'.qn

Fe=u-pit-pir =v-gq
where u, v are in R (and have unique factorizations there) and the p; and ¢; are irreducibles in R[x] of positive
degree. From above, all the contents of these irreducibles must be 1. Looking at this factorization in k[x],
it must be that m = n and up to renumbering p; differs from ¢; by a constant in £, and e; = f;. Since all
these polynomials have content 1, in fact p; differs from ¢; by a unit in R. By equating the contents of both
sides, we see that u and v differ by a unit in R*. Thus, by the unique factorization in R their factorizations
into irreducibles in R (and, from above, in R[z]) must be essentially the same. Thus, we obtain uniqueness
of factorization in R[z]. ///

3. Worked examples

[12.1] Let R be a principal ideal domain. Let I be a non-zero prime ideal in R. Show that I is mazimal.

Suppose that I were strictly contained in an ideal J. Let I = Rx and J = Ry, since R is a PID. Then x is
a multiple of y, say @ = ry. That is, ry € I. But y is not in I (that is, not a multiple of p), since otherwise
Ry C Rx. Thus, since I is prime, r € I, say r = ap. Then p = apy, and (since R is a domain) 1 = ay. That
is, the ideal generated by y contains 1, so is the whole ring R. That is, I is maximal (proper).

[12.2] Let k be a field. Show that in the polynomial ring k[z,y] in two variables the ideal I =
klz,y] -z + k[z,y] - y is not principal.

Suppose that there were a polynomial P(z,y) such that x = g(z,y) - P(z,y) for some polynomial g and
y = h(z,y) - P(z,y) for some polynomial h.

An intuitively appealing thing to say is that since y does not appear in the polynomial x, it could not appear
in P(z,y) or g(z,y). Similarly, since x does not appear in the polynomial y, it could not appear in P(z,y)
or h(z,y). And, thus, P(z,y) would be in k. It would have to be non-zero to yield z and y as multiples, so
would be a unit in k[z, y]. Without loss of generality, P(x,y) = 1. (Thus, we need to show that I is proper.)

On the other hand, since P(x,y) is supposedly in the ideal I generated by z and y, it is of the form
a(z,y) -« + b(z,y) - y. Thus, we would have

l=a(z,y) z+b(z,y) -y



186 Polynomials over UFDs

Mapping x — 0 and y — 0 (while mapping k to itself by the identity map, thus sending 1 to 1 # 0), we
would obtain
1=0

contradiction. Thus, there is no such P(z,y).

We can be more precise about that admittedly intuitively appealing first part of the argument. That is, let’s
show that if

r=g(z,y) - P(z,y)

then the degree of P(z,y) (and of g(z,y)) as a polynomial in y (with coeflicients in k[z]) is 0. Indeed, looking
at this equality as an equality in k(x)[y] (where k(x) is the field of rational functions in z with coefficients
in k), the fact that degrees add in products gives the desired conclusion. Thus,

P(z,y) € k(z) Nk[z,y] = k[z]
Similarly, P(z,y) lies in k[y], so P is in k.
[12.3] Let k be a field, and let R = k[zy,...,x,]. Show that the inclusions of ideals
Rx1 CRx1+Rys C...C Rx1+ ...+ Rxy,

are strict, and that all these ideals are prime.

One approach, certainly correct in spirit, is to say that obuviously
k[%l, N ,.Z‘n]/RJ)]_ +...+ Rl‘j ~ k[l‘j+1, N ,.Tn]

The latter ring is a domain (since k is a domain and polynomial rings over domains are domains: proof?)
so the ideal was necessarily prime.

But while it is true that certainly x1, ..., x; go to 0 in the quotient, our intuition uses the explicit construction
of polynomials as expressions of a certain form. Instead, one might try to give the allegedly trivial and
immediate proof that sending zi,...,z; to 0 does not somehow cause 1 to get mapped to 0 in £, nor
accidentally impose any relations on zj41,...,%,. A too classical viewpoint does not lend itself to clarifying
this. The point is that, given a k-algebra homomorphism f, : k — k, here taken to be the identity, and given
values 0 for z1,...,2; and values x;41,...,2, respectively for the other indeterminates, there is a unique
k-algebra homomorphism f : k[z1,...,2,] — k[2j41,...,2,] agreeing with f, on k and sending z1,...,z,
to their specified targets. Thus, in particular, we can guarantee that 1 € k is mot somehow accidentally
mapped to 0, and no relations among the x;1 ..., x, are mysteriously introduced.

[12.4] Let k be a field. Show that the ideal M generated by i,...,x, in the polynomial ring
R = E[xy,...,z,] is mazimal (proper).

We prove the maximality by showing that R/M is a field. The universality of the polynomial algebra implies
that, given a k-algebra homomorphism such as the identity f, : k — k, and given a; € k (take a; = 0
here), there exists a unique k-algebra homomorphism f : k[z1,...,z,] — k extending f,. The kernel of f
certainly contains M, since M is generated by the x; and all the x; go to 0.

As in the previous exercise, one perhaps should verify that M is proper, since otherwise accidentally in the
quotient map R — R/M we might not have 1 — 1. If we do know that M is a proper ideal, then by
the uniqueness of the map f we know that R — R/M is (up to isomorphism) exactly f, so M is maximal
proper.

Given a relation

1=Zfi'a?i
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with polynomials f;, using the universal mapping property send all z; to 0 by a k-algebra homomorphism
to k that does send 1 to 1, obtaining 1 = 0, contradiction.

[3.0.1] Remark: One surely is inclined to allege that obviously R/M =~ k. And, indeed, this quotient
is at most k, but one should at least acknowledge concern that it not be accidentally 0. Making the point
that not only can the images of the x; be chosen, but also the k-algebra homomorphism on k, decisively
eliminates this possibility.

[12.5] Show that the maximal ideals in R = Z[z] are all of the form
I=R-p+R- f(x)

where p is a prime and f(z) is a monic polynomial which is irreducible modulo p.

Suppose that no non-zero integer n lies in the maximal ideal I in R. Then Z would inject to the quotient
R/I, a field, which then would be of characteristic 0. Then R/I would contain a canonical copy of Q. Let
a be the image of z in K. Then K = Z[a], so certainly K = Q[a], so « is algebraic over @, say of degree
n. Let f(z) = apa™ + ...+ a12 + ap be a polynomial with rational coefficient such that f(a) = 0, and with
all denominators multiplied out to make the coefficients integral. Then let 8 = c,a: this § is still algebraic

over Q, so Q[F] = Q(P), and certainly Q(8) = Q(a), and Q(a) = Q[a]. Thus, we still have K = Q[5], but
now things have been adjusted so that § satisfies a monic equation with coefficients in Z: from

0=f(a) = f()=ci B " +cporch "B+ ..+ eicy B+

Cn
we multiply through by ¢?~! to obtain
0=08"+cr 1"+ en o 2+ cn 33 4 o382 128+ coc
Since K = Q[f] is an n-dimensional Q-vectorspace, we can find rational numbers b; such that
a=by+bif+bf+ ... +b,_18"!

Let N be a large-enough integer such that for every index ¢ we have b; € % -7Z. Note that because we made
(3 satisfy a monic integer equation, the set

AN=Z+7 -B+Z -3°+.. . +7Z-p"!

is closed under multiplication: 8" is a Z-linear combination of lower powers of 3, and so on. Thus, since
a € N™1A, successive powers o of o are in N—fA. Thus,

Zlo] C | N7'A
0>1

But now let p be a prime not dividing N. We claim that 1/p does not lie in Z[a]. Indeed, since 1,,..., 3"
are linearly independent over @, there is a unique expression for 1/p as a Q-linear combination of them,
namely the obvious % = % -1. Thus, 1/p is not in N=¢. A for any ¢ € Z. This (at last) contradicts the

supposition that no non-zero integer lies in a maximal ideal I in Z[z].
Note that the previous argument uses the infinitude of primes.

Thus, Z does not inject to the field R/I, so R/I has positive characteristic p, and the canonical Z-algebra
homomorphism Z — R/I factors through Z/p. Identifying Z[z]/p =~ (Z/p)[z], and granting (as proven in
an earlier homework solution) that for J C I we can take a quotient in two stages

R/I ~ (R/J)/(image of J in R/I)
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Thus, the image of I in (Z/p)[z] is a maximal ideal. The ring (Z/p)[z] is a PID, since Z/p is a field, and
by now we know that the maximal ideals in such a ring are of the form (f) where f is irreducible and of
positive degree, and conversely. Let F' € Z[z] be a polynomial which, when we reduce its coefficients modulo
p, becomes f. Then, at last,

1= -p+ 2l - f(a)

as claimed.

[12.6] Let R be a PID, and x,y non-zero elements of R. Let M = R/(z) and N = R/(y). Determine
Homp (M, N).

Any homomorphism f : M — N gives a homomorphism F' : R — N by composing with the quotient
map q : R — M. Since R is a free R-module on one generator 1, a homomorphism F : R — N is
completely determined by F(1), and this value can be anything in N. Thus, the homomorphisms from R
to N are exactly parametrized by F'(1) € N. The remaining issue is to determine which of these maps F'
factor through M, that is, which such F admit f : M — N such that F' = f oqg. We could try to define
(and there is no other choice if it is to succeed)

f(r+ Rx) = F(r)

but this will be well-defined if and only if ker ' O Rz.

Since 0 =y - F(r) = F(yr), the kernel of F': R — N invariably contains Ry, and we need it to contain Rx
as well, for F to give a well-defined map R/Rx — R/Ry. This is equivalent to

ker F O Rz + Ry = R - ged(, y)

or
F(ged(z,y)) ={0} CR/Ry=N

By the R-linearity,
R/Ry > 0= F(ged(x,y)) = ged(z,y) - F(1)

Thus, the condition for well-definedness is that

Y

F(1)eR- rd(z,y)

C R/Ry

Therefore, the desired homomorphisms f are in bijection with

Y

F(l)eR- rd(%y)

/Ry C R/Ry

where

fr+ Rx)=F(r)=r-F(1)

[12.7] (A warm-up to Hensel’s lemma) Let p be an odd prime. Fix a # 0 mod p and suppose 2> = a mod p
has a solution z;. Show that for every positive integer n the congruence z? = ¢ mod p™ has a solution .
(Hint: Try xp41 = @, + p™y and solve for y mod p).

Induction, following the hint: Given x, such that 22 = a mod p”, with n > 1 and p # 2, show that there
will exist y such that z,,,1 = x,, + yp" gives z2 +1 = amod p"*t1. Indeed, expanding the desired equality, it
is equivalent to

a =}, =x} +2w,p"y + p>"y”* mod p"t!
Since n > 1, 2n > n + 1, so this is

a=z2 + 22,p"y mod p" !
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ince a — z2 = k - p™ for some integer k, dividing through by p" gives an equivalent condition
Si 2=Fk-p"f int k, dividing th h by p™ gi ivalent conditi

k =2x,y mod p
Since p # 2, and since 22 = a # 0 mod p, 2z, is invertible mod p, so no matter what k is there exists y to
meet this requirement, and we’re done.

[12.8] (Another warm-up to Hensel’s lemma) Let p be a prime not 3. Fix a # 0 mod p and suppose
2% = a mod p has a solution z;. Show that for every positive integer n the congruence x> = @ mod p™ has a

solution . (Hint: Try x,4+1 = x, + p"y and solve for y mod p.)

Induction, following the hint: Given x,, such that 3 = a mod p™, with n > 1 and p # 3, show that there
will exist y such that z,,1 = x, + yp" gives x5 41 =amod p"*t1. Indeed, expanding the desired equality, it
is equivalent to

2n, 2

a=ad,, =ad +3x2p"y + 3z,p*"y* + p*y® mod p" T

Since n > 1, 3n > n + 1, so this is
n+1

a =z +322p"y mod p
Since a — 23 = k - p™ for some integer k, dividing through by p™ gives an equivalent condition

k= Sxiy mod p

Since p # 3, and since 23 = a # 0 mod p, 3z2 is invertible mod p, so no matter what k is there exists y to
meet this requirement, and we’re done.

Exercises

12.[3.0.1] Let k be a field. Show that every non-zero prime ideal in k[z] is maximal.

12.[3.0.2] Let k be a field. Let z,y, z be indeterminates. Show that the ideal I in k[z,y, 2] generated by
x, Yy, 2 is not principal.

12.[3.0.3] Let R be a commutative ring with identity that is not necessarily an integral domain. Let S
be a multiplicative subset of R. The localization S~ R is defined to be the set of pairs (r, s) with r € R and
s € S modulo the equivalence relation

(r,s) ~(r',s") <= thereis t € S such thatt - (rs’ —r's) =0

Show that the natural map ig : 7 — (7, 1) is a ring homomorphism, and that S~!R is a ring in which every
element of S becomes invertible.

12.[3.0.4] Indeed, in the situation of the previous exercise, show that every ring homomorphism ¢ : R —
R’ such that o(s) is invertible in R’ for s € S factors uniquely through S™'R. That is, there is a unique
f:S7'R — R’ such that ¢ = f oig with the natural map ig.



