
12. Polynomials over UFDs

12.1 Gauss’ lemma
12.2 Fields of fractions
12.3 Worked examples

The goal here is to give a general result which has as corollary that that rings of polynomials in several
variables

k[x1, . . . , xn]

with coefficients in a field k are unique factorization domains in a sense made precise just below. Similarly,
polynomial rings in several variables

Z[x1, . . . , xn]

with coefficients in Z form a unique factorization domain. [1]

1. Gauss’ lemma

A factorization of an element r into irreducibles in an integral domain R is an expression for r of the form

r = u · pe1
1 . . . pem

m

where u is a unit, p1 through pm are non-associate [2] irreducible elements, and the eis are positive integers.
Two factorizations

r = u · pe1
1 . . . pem

m

r = v · qf1
1 . . . qfn

n

[1] Among other uses, these facts are used to discuss Vandermonde determinants, and in the proof that the parity

(or sign) of a permutation is well-defined.

[2] Recall that two elements x, y of a commutative ring R are associate if x = yu for some unit u in R. This

terminology is most often applied to prime or irreducible elements.
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182 Polynomials over UFDs

into irreducibles pi and qj with units u, v are equivalent if m = n and (after possibly renumbering the
irreducibles) qi is associate to pi for all indices i. A domain R is a unique factorization domain (UFD)
if any two factorizations are equivalent.

[1.0.1] Theorem: (Gauss) Let R be a unique factorization domain. Then the polynomial ring in one
variable R[x] is a unique factorization domain.

[1.0.2] Remark: The proof factors f(x) ∈ R[x] in the larger ring k[x] where k is the field of fractions of R
(see below), and rearranges constants to get coefficients into R rather than k. Uniqueness of the factorization
follows from uniqueness of factorization in R and uniqueness of factorization in k[x].

[1.0.3] Corollary: A polynomial ring k[x1, . . . , xn] in a finite number of variables x1, . . ., xn over a field
k is a unique factorization domain. (Proof by induction.) ///

[1.0.4] Corollary: A polynomial ring Z[x1, . . . , xn] in a finite number of variables x1, . . ., xn over the
integers Z is a unique factorization domain. (Proof by induction.) ///

Before proving the theorem itself, we must verify that unique factorization recovers some naive ideas about
divisibility. Recall that for r, s ∈ R not both 0, an element g ∈ R dividing both r and s such that any divisor
d of both r and s also divides g, is a greatest common divisor of r and s, denoted g = gcd(r, s).

[1.0.5] Proposition: Let R be a unique factorization domain. For r, s in R not both 0 there exists
gcd(r, s) unique up to an element of R×. Factor both r and s into irreducibles

r = u · pe1
1 . . . pem

m s = v · pf1
1 . . . pfn

m

where u and v are units and the pi are mutually non-associate irreducibles (allow the exponents to be 0, to
use a common set of irreducibles to express both r and s). Then the greatest common divisor has exponents
which are the minima of those of r and s

gcd(r, s) = p
min (e1,f1)
1 . . . pmin (em,fm)

m

Proof: Let
g = p

min (e1,f1)
1 . . . pmin (em,fm)

m

First, g does divide both r and s. On the other hand, let d be any divisor of both r and s. Enlarge the
collection of inequivalent irreducibles pi if necessary such that d can be expressed as

d = w · ph1
1 . . . phm

m

with unit w and non-negative integer exponents. From d|r there is D ∈ R such that dD = r. Let

D = W · pH1
1 . . . pHm

m

Then
wW · ph1+H1

1 . . . phm+Hm
m = d ·D = r = u · pe1

1 . . . pem
m

Unique factorization and non-associateness of the pi implies that the exponents are the same: for all i

hi +Hi = ei

Thus, hi ≤ ei. The same argument applies with r replaced by s, so hi ≤ fi, and hi ≤ min (ei, fi). Thus, d|g.
For uniqueness, note that any other greatest common divisor h would have g|h, but also h|r and h|s. Using
the unique (up to units) factorizations, the exponents of the irreducibles in g and h must be the same, so g
and h must differ only by a unit. ///
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[1.0.6] Corollary: Let R be a unique factorization domain. For r and s in R, let g = gcd(r, s) be the
greatest common divisor. Then gcd(r/g, s/g) = 1. ///

2. Fields of fractions

The field of fractions k of an integral domain R is the collection of fractions a/b with a, b ∈ R and b 6= 0
and with the usual rules for addition and multiplication. More precisely, k is the set of ordered pairs (a, b)
with a, b ∈ R and b 6= 0, modulo the equivalence relation that

(a, b) ∼ (c, d)

if and only if ad− bc = 0. [3] Multiplication and addition are [4]

(a, b) · (c, d) = (ac, bd)

(a, b) + (c, d) = (ad+ bc, bd)

The map R −→ k by r −→ (r, 1)/ ∼ is readily verified to be a ring homomorphism. [5] Write a/b rather
than (a, b)/ ∼. When R is a unique factorization ring, whenever convenient suppose that fractions a/b are
in lowest terms, meaning that gcd(a, b) = 1.

Extend the notions of divisibility to apply to elements of the fraction field k of R. [6] First, say that x|y
for two elements x and y in k if there is r ∈ R such that s = rx. [7] And, for r1, . . ., rn in k, not all 0,
a greatest common divisor gcd(r1, . . . , rn) is an element g ∈ k such that g divides each ri and such that if
d ∈ k divides each ri then d|g.

[2.0.1] Proposition: In the field of fractions k of a unique factorization domain R (extended) greatest
common divisors exist.

Proof: We reduce this to the case that everything is inside R. Given elements xi = ai/bi in k with ai and
bi all in R, take 0 6= r ∈ R such that rxi ∈ R for all i. Let G be the greatest common divisor of the rxi, and
put g = G/r. We claim this g is the greatest common divisor of the xi. On one hand, from G|rxi it follows
that g|xi. On the other hand, if d|xi then rd|rxi, so rd divides G = rg and d|g. ///

The content cont(f) of a polynomial f in k[x] is the greatest common divisor [8] of the coefficients of f .

[2.0.2] Lemma: (Gauss) Let f and g be two polynomials in k[x]. Then

cont(fg) = cont(f) · cont(g)

[3] This corresponds to the ordinary rule for equality of two fractions.

[4] As usual for fractions.

[5] The assumption that R is a domain, is needed to make this work so simply. For commutative rings (with 1) with

proper 0-divisors the natural homomorphism r −→ (r, 1) of the ring to its field of fractions will not be injective. And

this construction will later be seen to be a simple extreme example of the more general notion of localization of rings.

[6] Of course notions of divisibility in a field itself are trivial, since any non-zero element divides any other. This is

not what is happening now.

[7] For non-zero r in the domain R, rx|ry if and only if x|y. Indeed, if ry = m · rx then by cancellation (using the

domain property), y = m · x. And y = m · x implies ry = m · rx directly.

[8] The values of the content function are only well-defined up to units R×. Thus, Gauss’ lemma more properly

concerns the equivalence classes of irreducibles dividing the respective coefficients.
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Proof: From the remark just above for any c ∈ k×

cont(c · f) = c · cont(f)

Thus, since

gcd(
a

gcd(a, b)
,

b

gcd(a, b)
) = 1

without loss of generality cont(f) = 1 and cont(g) = 1. Thus, in particular, both f and g have coefficients
in the ring R. Suppose cont(fg) 6= 1. Then there is non-unit irreducible p ∈ R dividing all the coefficients
of fg. Put

f(x) = a0 + a1x+ a2x
2 + . . .

g(x) = b0 + b1x+ b2x
2 + . . .

But p does not divide all the coefficients of f , nor all those of g. Let i be the smallest integer such that p
does not divide ai, j the largest integer such that p does not divide bj , and consider the coefficient of xi+j

in fg. It is

a0bi+j + a1bi+j−1 + . . .+ ai−1bj−1 + aibj + ai+1bj−1 + . . .+ ai+j−1b1 + ai+jb0

In summands to the left of aibj the factor ak with k < i is divisible by p, and in summands to the right of
aibj the factor bk with k < j is divisible by p. This leaves only the summand aibj to consider. Since the
whole sum is divisible by p, it follows that p|aibj . Since R is a unique factorization domain, either p|ai or
p|bj , contradiction. Thus, it could not have been that p divided all the coefficients of fg. ///

[2.0.3] Corollary: Let f be a polynomial in R[x]. If f factors properly in k[x] then f factors properly
in R[x]. More precisely, if f factors as f = g · h with g and h polynomials in k[x] of positive degree, then
there is c ∈ k× such that cg ∈ R[x] and h/c ∈ R[x], and

f = (cg) · (h/c)

is a factorization of f in R[x].

Proof: Since f has coefficients in R, cont(f) is in R. By replacing f by f/c we may suppose that cont(f) = 1.
By Gauss’ lemma

cont(g) · cont(h) = cont(f) = 1

Let c = cont(g). Then cont(h) = 1/c, and cont(g/c) = 1 and cont(c · h) = 1, so g/c and ch are in R[x], and
(g/c) · (ch) = f . Thus f is reducible in R[x]. ///

[2.0.4] Corollary: The irreducibles in R[x] are of two sorts, namely irreducibles in R and polynomials
f in R[x] with cont(f) = 1 which are irreducible in k[x].

Proof: If an irreducible p in R factored in R[x] as p = gh, then the degrees of g and h would be 0, and g
and h would be in R. The irreducibility of p in R would imply that one of g or h would be a unit. Thus,
irreducibles in R remain irreducible in R[x].

Suppose p was irreducible in R[x] of positive degree. If g = cont(p) was a non-unit, then p = (p/g) · g would
be a proper factorization of p, contradiction. Thus, cont(p) = 1. The previous corollary shows that p is
irreducible in k[x].

Last suppose that f is irreducible in k[x], and has cont(f) = 1. The irreducibility in k[x] implies that if
f = gh in R[x] then the degree one of g or h must be 0. Without loss of generality suppose deg g = 0, so
cont(g) = g. Since

1 = cont(f) = cont(g)cont(h)
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g is a unit in R, so f = gh is not a proper factorization, and f is irreducible in R[x]. ///

Proof: (of theorem) We can now combine the corollaries of Gauss’ lemma to prove the theorem. Given a
polynomial f in R[x], let c = cont(f), so from above cont(f/c) = 1. The hypothesis that R is a unique
factorization domain allows us to factor u into irreducibles in R, and we showed just above that these
irreducibles remain irreducible in R[x].

Replace f by f/cont(f) to assume now that cont(f) = 1. Factor f into irreducibles in k[x] as

f = u · pe1
1 · · · pem

m

where u is in k×, the pis are irreducibles in k[x], and the eis are positive integers. We can replace each pi

by pi/cont(pi) and replace u by
u · cont(p1)e1 · · · cont(pm)em

so then the new pis are in R[x] and have content 1. Since content is multiplicative, from cont(f) = 1 we find
that cont(u) = 1, so u is a unit in R. The previous corollaries demonstrate the irreducibility of the (new)
pis in R[x], so this gives a factorization of f into irreducibles in R[x]. That is, we have an explicit existence
of a factorization into irreducibles.

Now suppose that we have two factorizations

f = u · pe1
1 · · · pem

m = v · qf1
1 · · · qfn

n

where u, v are in R (and have unique factorizations there) and the pi and qj are irreducibles in R[x] of positive
degree. From above, all the contents of these irreducibles must be 1. Looking at this factorization in k[x],
it must be that m = n and up to renumbering pi differs from qi by a constant in k×, and ei = fi. Since all
these polynomials have content 1, in fact pi differs from qi by a unit in R. By equating the contents of both
sides, we see that u and v differ by a unit in R×. Thus, by the unique factorization in R their factorizations
into irreducibles in R (and, from above, in R[x]) must be essentially the same. Thus, we obtain uniqueness
of factorization in R[x]. ///

3. Worked examples

[12.1] Let R be a principal ideal domain. Let I be a non-zero prime ideal in R. Show that I is maximal.

Suppose that I were strictly contained in an ideal J . Let I = Rx and J = Ry, since R is a PID. Then x is
a multiple of y, say x = ry. That is, ry ∈ I. But y is not in I (that is, not a multiple of p), since otherwise
Ry ⊂ Rx. Thus, since I is prime, r ∈ I, say r = ap. Then p = apy, and (since R is a domain) 1 = ay. That
is, the ideal generated by y contains 1, so is the whole ring R. That is, I is maximal (proper).

[12.2] Let k be a field. Show that in the polynomial ring k[x, y] in two variables the ideal I =
k[x, y] · x+ k[x, y] · y is not principal.

Suppose that there were a polynomial P (x, y) such that x = g(x, y) · P (x, y) for some polynomial g and
y = h(x, y) · P (x, y) for some polynomial h.

An intuitively appealing thing to say is that since y does not appear in the polynomial x, it could not appear
in P (x, y) or g(x, y). Similarly, since x does not appear in the polynomial y, it could not appear in P (x, y)
or h(x, y). And, thus, P (x, y) would be in k. It would have to be non-zero to yield x and y as multiples, so
would be a unit in k[x, y]. Without loss of generality, P (x, y) = 1. (Thus, we need to show that I is proper.)

On the other hand, since P (x, y) is supposedly in the ideal I generated by x and y, it is of the form
a(x, y) · x+ b(x, y) · y. Thus, we would have

1 = a(x, y) · x+ b(x, y) · y
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Mapping x −→ 0 and y −→ 0 (while mapping k to itself by the identity map, thus sending 1 to 1 6= 0), we
would obtain

1 = 0

contradiction. Thus, there is no such P (x, y).

We can be more precise about that admittedly intuitively appealing first part of the argument. That is, let’s
show that if

x = g(x, y) · P (x, y)

then the degree of P (x, y) (and of g(x, y)) as a polynomial in y (with coefficients in k[x]) is 0. Indeed, looking
at this equality as an equality in k(x)[y] (where k(x) is the field of rational functions in x with coefficients
in k), the fact that degrees add in products gives the desired conclusion. Thus,

P (x, y) ∈ k(x) ∩ k[x, y] = k[x]

Similarly, P (x, y) lies in k[y], so P is in k.

[12.3] Let k be a field, and let R = k[x1, . . . , xn]. Show that the inclusions of ideals

Rx1 ⊂ Rx1 +Rx2 ⊂ . . . ⊂ Rx1 + . . .+Rxn

are strict, and that all these ideals are prime.

One approach, certainly correct in spirit, is to say that obviously

k[x1, . . . , xn]/Rx1 + . . .+Rxj ≈ k[xj+1, . . . , xn]

The latter ring is a domain (since k is a domain and polynomial rings over domains are domains: proof?)
so the ideal was necessarily prime.

But while it is true that certainly x1, . . . , xj go to 0 in the quotient, our intuition uses the explicit construction
of polynomials as expressions of a certain form. Instead, one might try to give the allegedly trivial and
immediate proof that sending x1, . . . , xj to 0 does not somehow cause 1 to get mapped to 0 in k, nor
accidentally impose any relations on xj+1, . . . , xn. A too classical viewpoint does not lend itself to clarifying
this. The point is that, given a k-algebra homomorphism fo : k −→ k, here taken to be the identity, and given
values 0 for x1, . . . , xj and values xj+1, . . . , xn respectively for the other indeterminates, there is a unique
k-algebra homomorphism f : k[x1, . . . , xn] −→ k[xj+1, . . . , xn] agreeing with fo on k and sending x1, . . . , xn

to their specified targets. Thus, in particular, we can guarantee that 1 ∈ k is not somehow accidentally
mapped to 0, and no relations among the xj+1 . . . , xn are mysteriously introduced.

[12.4] Let k be a field. Show that the ideal M generated by x1, . . . , xn in the polynomial ring
R = k[x1, . . . , xn] is maximal (proper).

We prove the maximality by showing that R/M is a field. The universality of the polynomial algebra implies
that, given a k-algebra homomorphism such as the identity fo : k −→ k, and given αi ∈ k (take αi = 0
here), there exists a unique k-algebra homomorphism f : k[x1, . . . , xn] −→ k extending fo. The kernel of f
certainly contains M , since M is generated by the xi and all the xi go to 0.

As in the previous exercise, one perhaps should verify that M is proper, since otherwise accidentally in the
quotient map R −→ R/M we might not have 1 −→ 1. If we do know that M is a proper ideal, then by
the uniqueness of the map f we know that R −→ R/M is (up to isomorphism) exactly f , so M is maximal
proper.

Given a relation
1 =

∑
i

fi · xi
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with polynomials fi, using the universal mapping property send all xi to 0 by a k-algebra homomorphism
to k that does send 1 to 1, obtaining 1 = 0, contradiction.

[3.0.1] Remark: One surely is inclined to allege that obviously R/M ≈ k. And, indeed, this quotient
is at most k, but one should at least acknowledge concern that it not be accidentally 0. Making the point
that not only can the images of the xi be chosen, but also the k-algebra homomorphism on k, decisively
eliminates this possibility.

[12.5] Show that the maximal ideals in R = Z[x] are all of the form

I = R · p+R · f(x)

where p is a prime and f(x) is a monic polynomial which is irreducible modulo p.

Suppose that no non-zero integer n lies in the maximal ideal I in R. Then Z would inject to the quotient
R/I, a field, which then would be of characteristic 0. Then R/I would contain a canonical copy of Q. Let
α be the image of x in K. Then K = Z[α], so certainly K = Q[α], so α is algebraic over Q, say of degree
n. Let f(x) = anx

n + . . .+ a1x+ a0 be a polynomial with rational coefficient such that f(α) = 0, and with
all denominators multiplied out to make the coefficients integral. Then let β = cnα: this β is still algebraic
over Q, so Q[β] = Q(β), and certainly Q(β) = Q(α), and Q(α) = Q[α]. Thus, we still have K = Q[β], but
now things have been adjusted so that β satisfies a monic equation with coefficients in Z: from

0 = f(α) = f(
β

cn
) = c1−n

n βn + cn−1c
1−n
n βn−1 + . . .+ c1c

−1
n β + c0

we multiply through by cn−1
n to obtain

0 = βn + cn−1β
n−1 + cn−2cnβ

n−2 + cn−3c
2
nβ

n−3 + . . .+ c2c
n−3
n β2 + c1c

n−2
n β + c0c

n−1
n

Since K = Q[β] is an n-dimensional Q-vectorspace, we can find rational numbers bi such that

α = b0 + b1β + b2β
2 + . . .+ bn−1β

n−1

Let N be a large-enough integer such that for every index i we have bi ∈ 1
N ·Z. Note that because we made

β satisfy a monic integer equation, the set

Λ = Z+ Z · β + Z · β2 + . . .+ Z · βn−1

is closed under multiplication: βn is a Z-linear combination of lower powers of β, and so on. Thus, since
α ∈ N−1Λ, successive powers α` of α are in N−`Λ. Thus,

Z[α] ⊂
⋃
`≥1

N−`Λ

But now let p be a prime not dividing N . We claim that 1/p does not lie in Z[α]. Indeed, since 1, β, . . . , βn−1

are linearly independent over Q, there is a unique expression for 1/p as a Q-linear combination of them,
namely the obvious 1

p = 1
p · 1. Thus, 1/p is not in N−` · Λ for any ` ∈ Z. This (at last) contradicts the

supposition that no non-zero integer lies in a maximal ideal I in Z[x].

Note that the previous argument uses the infinitude of primes.

Thus, Z does not inject to the field R/I, so R/I has positive characteristic p, and the canonical Z-algebra
homomorphism Z −→ R/I factors through Z/p. Identifying Z[x]/p ≈ (Z/p)[x], and granting (as proven in
an earlier homework solution) that for J ⊂ I we can take a quotient in two stages

R/I ≈ (R/J)/(image of J in R/I)
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Thus, the image of I in (Z/p)[x] is a maximal ideal. The ring (Z/p)[x] is a PID, since Z/p is a field, and
by now we know that the maximal ideals in such a ring are of the form 〈f〉 where f is irreducible and of
positive degree, and conversely. Let F ∈ Z[x] be a polynomial which, when we reduce its coefficients modulo
p, becomes f . Then, at last,

I = Z[x] · p+ Z[x] · f(x)

as claimed.

[12.6] Let R be a PID, and x, y non-zero elements of R. Let M = R/〈x〉 and N = R/〈y〉. Determine
HomR(M,N).

Any homomorphism f : M −→ N gives a homomorphism F : R −→ N by composing with the quotient
map q : R −→ M . Since R is a free R-module on one generator 1, a homomorphism F : R −→ N is
completely determined by F (1), and this value can be anything in N . Thus, the homomorphisms from R
to N are exactly parametrized by F (1) ∈ N . The remaining issue is to determine which of these maps F
factor through M , that is, which such F admit f : M −→ N such that F = f ◦ q. We could try to define
(and there is no other choice if it is to succeed)

f(r +Rx) = F (r)

but this will be well-defined if and only if kerF ⊃ Rx.

Since 0 = y · F (r) = F (yr), the kernel of F : R −→ N invariably contains Ry, and we need it to contain Rx
as well, for F to give a well-defined map R/Rx −→ R/Ry. This is equivalent to

kerF ⊃ Rx+Ry = R · gcd(x, y)

or
F (gcd(x, y)) = {0} ⊂ R/Ry = N

By the R-linearity,
R/Ry 3 0 = F (gcd(x, y)) = gcd(x, y) · F (1)

Thus, the condition for well-definedness is that

F (1) ∈ R · y

gcd(x, y)
⊂ R/Ry

Therefore, the desired homomorphisms f are in bijection with

F (1) ∈ R · y

gcd(x, y)
/Ry ⊂ R/Ry

where
f(r +Rx) = F (r) = r · F (1)

[12.7] (A warm-up to Hensel’s lemma) Let p be an odd prime. Fix a 6≡ 0 mod p and suppose x2 = a mod p
has a solution x1. Show that for every positive integer n the congruence x2 = a mod pn has a solution xn.
(Hint: Try xn+1 = xn + pny and solve for y mod p).

Induction, following the hint: Given xn such that x2
n = a mod pn, with n ≥ 1 and p 6= 2, show that there

will exist y such that xn+1 = xn + ypn gives x2
n+1 = a mod pn+1. Indeed, expanding the desired equality, it

is equivalent to
a = x2

n+1 = x2
n + 2xnp

ny + p2ny2 mod pn+1

Since n ≥ 1, 2n ≥ n+ 1, so this is
a = x2

n + 2xnp
ny mod pn+1
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Since a− x2
n = k · pn for some integer k, dividing through by pn gives an equivalent condition

k = 2xny mod p

Since p 6= 2, and since x2
n = a 6= 0 mod p, 2xn is invertible mod p, so no matter what k is there exists y to

meet this requirement, and we’re done.

[12.8] (Another warm-up to Hensel’s lemma) Let p be a prime not 3. Fix a 6= 0 mod p and suppose
x3 = a mod p has a solution x1. Show that for every positive integer n the congruence x3 = a mod pn has a
solution xn. (Hint: Try xn+1 = xn + pny and solve for y mod p.)

Induction, following the hint: Given xn such that x3
n = a mod pn, with n ≥ 1 and p 6= 3, show that there

will exist y such that xn+1 = xn + ypn gives x3
n+1 = a mod pn+1. Indeed, expanding the desired equality, it

is equivalent to
a = x3

n+1 = x3
n + 3x2

np
ny + 3xnp

2ny2 + p3ny3 mod pn+1

Since n ≥ 1, 3n ≥ n+ 1, so this is
a = x3

n + 3x2
np

ny mod pn+1

Since a− x3
n = k · pn for some integer k, dividing through by pn gives an equivalent condition

k = 3x2
ny mod p

Since p 6= 3, and since x3
n = a 6= 0 mod p, 3x2

n is invertible mod p, so no matter what k is there exists y to
meet this requirement, and we’re done.

Exercises

12.[3.0.1] Let k be a field. Show that every non-zero prime ideal in k[x] is maximal.

12.[3.0.2] Let k be a field. Let x, y, z be indeterminates. Show that the ideal I in k[x, y, z] generated by
x, y, z is not principal.

12.[3.0.3] Let R be a commutative ring with identity that is not necessarily an integral domain. Let S
be a multiplicative subset of R. The localization S−1R is defined to be the set of pairs (r, s) with r ∈ R and
s ∈ S modulo the equivalence relation

(r, s) ∼ (r′, s′) ⇐⇒ there is t ∈ S such thatt · (rs′ − r′s) = 0

Show that the natural map iS : r −→ (r, 1) is a ring homomorphism, and that S−1R is a ring in which every
element of S becomes invertible.

12.[3.0.4] Indeed, in the situation of the previous exercise, show that every ring homomorphism ϕ : R −→
R′ such that ϕ(s) is invertible in R′ for s ∈ S factors uniquely through S−1R. That is, there is a unique
f : S−1R −→ R′ such that ϕ = f ◦ iS with the natural map iS .


