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[01.1] Express the two values for
√
i in terms of radicals.

The definition of square root here is that (a+ bi)2 = i. Multiplying out gives (a2− b2)+2abi = i. Separating
into real and imaginary parts gives a2−b2 = 0 and 2ab = 1. From the first of these, b = ±a, and substituting
into the second gives ±2a2 = 1. Thus,

±
√
i = ±

( 1√
2

+
i√
2

Another approach, making more use of the geometry via the Euler identity eix = cosx+ i sinx, is as follows,
although a careful version of this is more verbose in this context. First, using that Euler identity, eix = i
exactly for x = π

2 + 2πn for integer n. Then (eiy)2 = i implies e2iy = ei(
π
2 +2πn) exactly for integers n. That

is, again by Euler’s identity,

2iy =
π

2
− 2πn (for integers n)

and
±
√
i = ei(

π
4 +πn) (for integers n)

Since eπin = 1 exactly for integers n, the complete list of distinct values is

±
√
i = ei(

π
4 ), ei(

π
4 +π) = cos

π

4
+ i sin

π

4
, −

(
cos

π

4
+ i sin

π

4

)
= ±

( 1√
2

+
i√
2

)

[01.2] Determine all values of ii.

For this example, there is no alternative but to use Euler’s identity, to raise complex numbers to the ith

power. That is, there is no alternative algebraic or limiting definition of αi, unlike the case of integer,
rational, or real exponents. From Euler’s identity,

i = e
πi
2 +2πin (for every integer n)

Then
ii = e(

πi
2 +2πin)·i = e−

πi
2 −2πn (for every integer n)

It is striking that the outcome is a collection of real numbers approaching 0+ at one end and going to +∞
at the other.

[01.3] Derive the usual formula for sin(z + w) by using ez.

Use sin z = eiz−e−iz
2i and cos z = eiz+e−iz

2 , which hold for complex z, as well, and also the opposite formula
eiz = cos z + i sin z. Also note that cos z is even, while sin z is odd. Then the basic property ez+w = ez · ew
and elementary algebra give the desired identity:

sin(z + w) =
ei(z+w) − e−i(z+w)

2i
=

eiz eiw − e−iz e−iw)

2i

=
(cos z + i sin z) (cosw + i sinw)− (cos z − i sin z) (cosw − i sinw)

2i

=
2i sin z cosw + 2i cos z sinw

2i
= sin z cosw + cos z sinw
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[01.4] Express cos 5x as a polynomial in cosx and sinx.

Again use sin z = eiz−e−iz
2i and cos z = eiz+e−iz

2 , eiz = cos z+ i sin z, and the even-ness of cosx and odd-ness
of sinx:

cos 5x =
e5ix + e−5ix

2
=

(eix)5 + (e−ix)5

2
=

(cosx+ i sinx)5 + (cosx− i sinx)5

2

=

∑5
j=0

(
5
j

)
cosj x (i sinx)5−j +

∑5
j=0

(
5
j

)
cosj x (−i sinx)5−j

2

=

5∑
even j=0

(
5

j

)
cosj x (i sinx)5−j = cos4 x+ 10 cos2 x sin3 x+ 4 cosx sin4 x

[01.5] By mere algebra, write a power series expansion near z = 0 for

f(z) =
1

(z − 1)(z − 2)

This has to allow use of the geometric series expansion 1
1−w = 1 + w + w2 + w3 + . . . for |w| < 1. It is

convenient to separate the two factors of the denominator by a partial fractions expansion, as

1

(z − 1)(z − 2)
=
−1

z − 1
+

1

z − 2

The coefficients can be found by looking at the asymptotics as z → 1 and z → 2, for example. Thus,

1

(z − 1)(z − 2)
=
−1

z − 1
+

1

z − 2
=

1

1− z
+
− 1

2

1− z
2

= (1 + z + z2 + . . .)− 1
2 (1 +

z

2
+
(z

2

)2
+ . . .)

=

∞∑
n=0

(
1− 1

2n

)
zn

[01.6] Determine the radius of convergence of
∑
n≥1

3n

n(n+1)(n+2) z
n.

The ratio test succeeds:

3n/n(n+ 1)(n+ 2)

3n+1/(n+ 1)(n+ 2)(n+ 3)
=

1/n

3/(n+ 3)
=

n+ 3

3n
=

1

3
+

1

n
−→ 1

3
(as n→ +∞)

so the radius of convergence is 1/3.

[01.7] Determine the radius of convergence of
∑
n≥1

n!
nn z

n.

The ratio test succeeds:

n!/nn

(n+ 1)!/(n+ 1)n+1
=

1/nn

(n+ 1)/(n+ 1)n+1
=
(

1 +
1

n

)n
−→ e (as n→ +∞)

by one characterization of the number e. That is, the radius of convergence is e.
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[01.8] For two complex numbers a, b, with b not a non-positive integer, show that the radius of convergence
of ∑

n≥0

a(a+ 1)(a+ 2) . . . (a+ n− 1)(a+ n)

b(b+ 1)(b+ 2) . . . (b+ n− 1)(b+ n)
zn

is at least 1.

If a happens to be a negative integer, the sum terminates, and is a polynomial, so has radius of convergence
+∞.

For a not a negative integer, the ratio test succeeds:

a(a+ 1)(a+ 2) . . . (a+ n− 1)(a+ n)

b(b+ 1)(b+ 2) . . . (b+ n− 1)(b+ n)

/ a(a+ 1)(a+ 2) . . . (a+ n)(a+ n+ 1)

b(b+ 1)(b+ 2) . . . (b+ n)(b+ n+ 1)

=
b+ n+ 1

a+ n+ 1
=

1 + b+1
n

1 + a+1
n

−→ 1 (as n→ +∞)

so the radius of convergence is 1 in this case.

[01.9] From the very definition of convergence, show that when the partial sums of a series a1 + a2 + . . .
are bounded, and when the elements of the sequence {bn} are positive (real) and go to 0 monotonically, then
the series

∑
anbn converges.

In fact, we show that the partial sums of
∑
n anbn form a Cauchy sequence, so, by the completeness of C,

the infinite sum converges. That is, we prove that the tails
∑n
`=m a`b` have the property that, given ε > 0,

there is N such that |
∑n
`=m a`b`| < ε for all m,n ≥ N .

To this end, we rearrange the tails by partial summation: letting An = a1 + . . .+ an and Bn = b1 + . . .+ bn,

ambm + am+1bm+1 + . . .+ anbn = (Am+1 −Am)bm + . . .+ (An+1 −An)bn

= −Ambm +Am+1(bm − bm+1) +Am+2(bm+1 − bm+2) + . . .+An(bn−1 − bn) +An+1bn

Taking absolute values, letting C be a bound for the |An|, using bj > bj+1 > 0,∣∣∣−Ambm +Am+1(bm − bm+1) + . . .+An(bn−1 − bn) +An+1bn

∣∣∣
≤ Cbm + C(bm − bm+1) + C(bm+1 − bm+2) + . . .+ C(bn−1 − bn) + Cbn = Cbm −→ 0

since bm → 0. Thus, the partial sums are Cauchy, and the infinite sum converges.

[01.10] Show that the function f(z) =
∑

zn/n2 on the open disk |z| < 1 extends to a continuous function
on the closed unit disc.

Since the power series has radius of convergence 1, it gives an infinitely-differentiable, hence continuous,
function on the open disk. There are several possible arguments to prove continuity on the closed disk, but
in any case it is important to note that Abel’s theorem about non-tangential approach does not instantly
prove this, since every neighborhood of a point on the boundary circle contains points outside the non-
tangential approach regions address.

A general argument that applies here is that a uniform limit of continuous functions is continuous. The
finite subsums

∑
n≤N z

n/n2 are polynomials, so certainly continuous. The differences are easily bounded,
with M ≤ N , with |z| ≤ 1, by ∣∣∣ ∑

1≤n≤M

zn

n2
−

∑
1≤n≤N

zn

n2

∣∣∣ ≤ ∑
M<n≤N

1

n2

Since
∑
n≥1 1/n2 converges, given ε > 0 there is Mo such that

∑
M<n≤N

1
n2 < ε for all Mo ≤M ≤ N . Thus,

the partial sums of
∑
n z

n/n2 for |z| ≤ 1 form a Cauchy sequence in sup norm, so converge to a continuous
function on the closed disk.
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