Complex analysis examples discussion 03

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/

[This document is http://www.math.umn.edu/~garrett/m/complex/examples_2020-21/cx_discussion_03.pdf]

[03.1] Adapt the reflection principle to show that a holomorphic function on the unit disk, extending to a continuous function on the closed unit disk, with \(|f(z)| = 1 \) on the unit circle, extends to a holomorphic function on \(\mathbb{C} \) except for finitely-many poles. (Hint: for example, \(z \to \frac{z-i}{z+i} \) maps the real line to the unit circle.)

Discussion: The inverse Cayley map \(C^{-1}(z) = \frac{z-i}{z+i} \) maps the upper half-plane to the disk, and the real line to the unit circle. Thus, \(F = C^{-1} \circ f \circ C \) is holomorphic on the upper half-plane taking values in the upper half-plane, extending to a real-valued continuous function on \(\mathbb{R} \), satisfies the hypotheses of the most standard reflection principle. Thus, by the reflection principle, \(F \) extends by

\[
F(\overline{z}) = \overline{F(z)} \quad \text{(for } z \in \mathbb{R})
\]

Let \(\alpha \) be the complex conjugation map. The Cayley map interacts in a coherent way with conjugation: \(C \circ \alpha = \alpha \circ C^{-1} \), and \(C^{-1} \circ \alpha = \alpha \circ C^{-1} \).

Letting \(F \) still denote the extension,

\[
f = C^{-1} \circ F \circ C = C^{-1} \circ (\alpha \circ F \circ \alpha) \circ C
\]

by using the formula for the extension of \(F \) to the lower half-plane. Now rearrange to rewrite the latter expression in terms of \(f \) itself. First, the interaction of \(\alpha \) and \(C \) gives

\[
\alpha \circ C \circ F \circ C^{-1} \circ \alpha = \alpha \circ C^2 \circ (C^{-1} \circ F \circ C) \circ C^{-2} \circ \alpha = \alpha \circ C^2 \circ f \circ C^{-2} \circ \alpha
\]

The Cayley map has the important property that \(C^2(z) = C^{-2}(z) = 1/z \), so this gives

\[
f(z) = \alpha \circ \frac{1}{f(1/\overline{z})} = 1/f(1/\overline{z})
\]

This is the desired reflection formula for the circle. Note that zeros of \(f \) give rise to poles of the reflected part. The hypotheses on \(f \) in the disk assure that it has finitely-many zeros there, so the reflected part has finitely-many poles. ///

[03.2] Show that \(\Gamma(\frac{1}{2}) = \sqrt{\pi} \).

Discussion: First, a change of variables

\[
\Gamma(\frac{1}{2}) = \int_0^\infty e^{-t^2} \frac{dt}{t} = 2 \int_0^\infty e^{-t^2} t \frac{dt}{t} = \int_\mathbb{R} e^{-t^2} dt
\]

and then the standard calculus device: squaring and converting to polar coordinates:

\[
\left(\int_\mathbb{R} e^{-t^2} dt \right)^2 = \int_{\mathbb{R}^2} e^{-(x^2+y^2)} dx dy = \int_0^{2\pi} \int_0^\infty e^{-r^2} r dr d\theta = 2\pi \int_0^\infty e^{-r^2} r dr
\]

\[
= \pi \int_0^\infty e^{-r^2} 2r dr = \pi \int_0^\infty e^{-r} dr = \pi
\]

Thus, \(\Gamma(\frac{1}{2}) = \sqrt{\pi} \). ///
Alternatively, the functional equation $\Gamma(s)\Gamma(1-s) = \pi/\sin \pi s$ gives

$$\Gamma\left(\frac{1}{2}\right)^2 = \Gamma\left(\frac{1}{2}\right) \cdot \Gamma\left(1 - \frac{1}{2}\right) = \frac{\pi}{\sin \frac{\pi}{2}} = \pi$$

and we reach the same conclusion.

[03.3] Show that $\Gamma(s) = \Gamma(s)$ for all $s \in \mathbb{C}$.

Discussion: This is an instance of application of the Identity Principle. Namely, from its integral representation, $\Gamma(s)$ is \mathbb{R}-valued for $s \in (0, +\infty)$. Thus, for $s \in (0, +\infty)$, $\Gamma(s) = \Gamma(\overline{s})$. Thus, $s \rightarrow \Gamma(s)$ is holomorphic. By the Identity Principle, we have the asserted equality everywhere.

We might want to recall the computation that for f holomorphic $z \rightarrow f(z)$ is again holomorphic, by checking complex differentiability:

$$\frac{f(z + h) - f(z)}{h} = \frac{f(\overline{z + h}) - f(\overline{z})}{\overline{h}}$$

Since $h \rightarrow 0$ is equivalent to $\overline{h} \rightarrow 0$, the limit as $\overline{h} \rightarrow 0$ of the expression under the complex conjugation on the right-hand side is $f'(z)$. In particular, the limit exists. Thus, $z \rightarrow f(z)$ is holomorphic.

[03.4] Show that $|\Gamma\left(\frac{1}{2} + it\right)| = \sqrt{\frac{\pi}{\cosh \pi t}}$ for real t. (Thus, in contrast to the horizontal super-exponential growth of $n \rightarrow n!$, the vertical behavior is exponential decrease.)

Discussion: Use the functional equation and $\Gamma(s) = \Gamma(\overline{s})$:

$$|\Gamma\left(\frac{1}{2} + it\right)|^2 = \Gamma\left(\frac{1}{2} + it\right) \cdot \Gamma\left(\frac{1}{2} + it\right) = \Gamma\left(\frac{1}{2} + it\right) \cdot \Gamma\left(1 - \left(\frac{1}{2} + it\right)\right) = \frac{2\pi i}{\sin \pi\left(\frac{1}{2} + it\right)} = \frac{2\pi i}{e^{\pi i (1+it)} - e^{-\pi i (1+it)}} = \frac{2\pi i}{ie^{-\pi t} + ie^{\pi t}} = \frac{\pi}{\cosh \pi t}$$

Thus,

$$|\Gamma\left(\frac{1}{2} + it\right)| = \sqrt{\frac{\pi}{\cosh \pi t}}$$

as claimed.

[03.5] Prove that $f(z) = \int_0^1 \frac{e^{tz}}{t^2 + 1} \, dt$ is holomorphic.

Discussion: The simplest argument might be to invoke Morera’s theorem after changing order of integration. The change of order is easily justifiable, since one is looking at a continuous function of two variables. That is, for each $t \in [0, 1]$, the function $z \rightarrow \frac{e^{tz}}{t^2 + 1}$ is holomorphic, and the function of two variables is continuous. Thus, letting γ be a small triangle,

$$\int_0^1 \int_{\gamma} \frac{e^{tz}}{t^2 + 1} \, dz \, dt = \int_0^1 \int_{\gamma} \frac{e^{tz}}{t^2 + 1} \, dz \, dt = \int_0^1 0 \, dt = 0$$

by applying Cauchy’s theorem to $z \rightarrow \frac{e^{tz}}{t^2 + 1}$. By Morera, $f(z)$ is continuous.

Another approach is to view the integral as a uniform limit of a sequence of finite (Riemann) sums, each of which is holomorphic, being a finite sum of holomorphic functions, and then invoke the holomorphy of uniform (on compacts) limits of holomorphic functions.
[03.6] Prove that \(f(z) = \int_0^{\infty} \frac{e^{-tz}}{t^2 + 1} \) is holomorphic for \(\text{Re}(z) > 0 \).

Discussion: Using the previous example, it would suffice to show that the sequence of finite integrals
\[
f_n(z) = \int_0^{n} \frac{e^{-tz}}{t^2 + 1}
\]
converges uniformly to \(f(z) \) for \(z \) in compact subsets of \(\text{Re}(z) > 0 \), since these finite integrals are holomorphic functions, via Morera.

For fixed \(\delta > 0 \) and \(\text{Re}(z) \geq \delta \), for \(N \leq m \leq n \),
\[
\left| f_m(z) - f_n(z) \right| \leq \int_m^n \frac{e^{-t\delta}}{t^2 + 1} \leq \int_N^{\infty} e^{-t\delta} dt = \frac{e^{-N\delta}}{\delta}
\]
This can be made smaller than a given \(\delta > 0 \) by taking \(N \) sufficiently large. ///

[03.7] Compute \(\int_0^{\infty} \frac{x^s}{1+x^2} \) dx.

Discussion: The integral is absolutely convergent for \(-1 < \text{Re}(s) < 1\). Implicitly,
\[
x^s = e^{s \log x}
\]
where the logarithm is the one which is real-valued on \((0, +\infty)\). Use the Hankel/keyhole contour. First, the integral itself is a limit
\[
\int_0^{\infty} \frac{x^s}{1+x^2} \, dx = \lim_{\epsilon \to 0^+ \epsilon < R} \int_{\epsilon}^{R} \frac{x^s}{1+x^2} \, dx.
\]
Let \(H_{\epsilon,R} \) be the Hankel/keyhole contour that comes from \(R \) along the real line to \(\epsilon \), then traces a circle of radius \(\epsilon \) around 0 clockwise to \(\epsilon \), then back out to \(R \). Let \(H_\epsilon \) be the limiting case as \(R \to +\infty \). We want the integral along that last part of the path, the outbound part from \(\epsilon \) back out to \(R \), to be the original integral \(\int_\epsilon^{R} \frac{x^s}{(x^2 + 1)} \, dx \). That is, we want the value of \(x^s \) to match.

On that small circle, the argument of \(x \) changes continuously, with a net decrease of \(2\pi \) from its value on the in-bound part of the path. Requiring that \(x^s \) change continuously on that small circle, and be \(e^{s \log x} \) with real-valued \(\log x \) after traversing \(2\pi \) radians counter-clockwise, requires that \(x^s \) be \(e^{s(\log x + 2\pi i)} \) on the in-bound path. Thus,
\[
\int_{\text{outbound+inbound}} \frac{x^s \, dx}{1+x^2} = \left(1 - e^{2\pi is}\right) \int_{\epsilon}^{R} \frac{x^s}{1+x^2} \, dx;
\]
Further, the main point of the keyhole trick is that, surprisingly, the limit over \(\epsilon \to 0^+ \) is reached in finite time, in the sense that there is sufficiently small \(\epsilon_0 > 0 \) such that
\[
\lim_{\epsilon \to 0^+} \int_{H_{\epsilon,R}} \frac{x^s \, dx}{1+x^2} = \int_{H_{\epsilon_1,R}} \frac{x^s \, dx}{1+x^2} \quad \text{(for all positive } \epsilon_1 < \epsilon_0)\]
Recall the proof: for \(0 < \epsilon_1 < \epsilon_0 \), let \(\gamma_{\epsilon_0, \epsilon_1} \) be the closed path that traces counter-clockwise around the circle of radius \(\epsilon_0 \) from \(\epsilon_0 \) back to \(\epsilon_0 \), then left to \(\epsilon_1 \), then clockwise around a circle of radius \(\epsilon_1 \) back to \(\epsilon_1 \), then right to \(\epsilon_0 \). In the interior of this path, the integrand is holomorphic. Adding the integral over \(\gamma_{\epsilon_0, \epsilon_1} \) to the integral over \(H_{\epsilon_1,R} \) makes the integrals from \(\epsilon_0 \) to \(\epsilon_1 \) (inbound) and from \(\epsilon_1 \) to \(\epsilon_0 \) (outbound) cancel, and the integrals around the circles of radius \(\epsilon_1 \) cancel, leaving \(H_{\epsilon_0,R} \). (Yes, one should draw a picture.) To evaluate
\[
\int_{H_{\epsilon_1,R}} \frac{x^s \, dx}{1+x^2}
\]
Thus, the ends of the box are easily estimated: since

\[\int \]

Then the arg \(x \) poles, at \(x \) times the sum of residues in its interior. Inside that path, for small \(\varepsilon \) and large \(R \), there are exactly two poles, at \(x = \pm i \), and both are simple. The value of arg \(x \) at \(i \) is obtained by moving counter-clockwise from the arg \(x = 0 \) on \((0, +\infty)\), giving \(\pi \). The argument at \(-i\) is obtained by continuing counter-clockwise, giving \(\frac{3\pi}{2} \). Thus,

\[
\text{sum of residues} = \frac{e^{\pi i} s}{(-i) - i} + \frac{e^{3\pi i} s}{i - (-i)} = \frac{e^{\pi i} s}{-2i} + \frac{e^{3\pi i} s}{2i}
\]

In summary,

\[
\int_0^\infty \frac{x^s}{1 + x^2} \, dx = \frac{1}{1 - e^{2\pi i s}} \lim_R \int_{H_{1+R}} \frac{x^s}{1 + x^2} \, dx = \frac{2\pi i}{1 - e^{2\pi i s}} \left(\frac{e^{\pi i} s}{-2i} + \frac{e^{3\pi i} s}{2i} \right)
\]

\[
= \frac{\pi}{e^{2\pi i s} - 1} \left(e^{\pi i s} - e^{3\pi i s} \right) = \pi \frac{e^{\pi i s} - e^{-\pi i s}}{2} = \frac{\pi}{2 \cos \frac{\pi s}{2}}
\]

[03.8] Compute \(\int_{-\infty}^\infty e^{-ix} e^{-x^2} \, dx \)

Discussion: The exponentials can be combined, and then complete the square:

\[-\frac{1}{2\pi i} \int_{-\infty}^{\infty} e^{-ix} e^{-x^2} \, dx = \int_{-\infty}^{\infty} e^{-ix} e^{-x^2} \, dx = \int_{-\infty}^{\infty} e^{-(x^2+ix^2)} \, dx
\]

\[
= \int_{-\infty}^{\infty} e^{-(x^2+ix+\frac{\xi^2}{4})-rac{\xi^2}{4}} \, dx = e^{-\frac{\xi^2}{4}} \int_{-\infty}^{\infty} e^{-(x+\frac{\xi}{2})^2} \, dx
\]

The intuition at this point is that sliding the integral from \(-\infty\) to \(+\infty\) along the real axis to be an integral from \(-i\xi - \infty\) to \(-i\xi + \infty\) will not change the value of the integral, since there are no residues to pick up, while it will convert the integrand back to \(e^{-x^2}\), which does not involve \(\xi\).

As usual, an integral from \(-\infty\) to \(+\infty\) is a limit of the corresponding integral from \(-R\) to \(+R\), as \(R \to +\infty\). Then

\[
\int_{-\infty}^{\infty} e^{-(x+\frac{\xi}{2})^2} \, dx = \lim_R \int_{-R}^{R} e^{-(x+\frac{\xi}{2})^2} \, dx = \int_{-\xi - R}^{-i\xi + R} e^{-x^2} \, dx
\]

Let \(B_R\) be the rectangle with vertices \(\pm R\) and \(-i\xi \pm R\), traced counter-clockwise. The integrals over the ends of the box are easily estimated: since \(|e^{-(x+iy)^2}| = e^{-\text{Re}(x+iy)^2} = e^{-x^2+y^2}\),

\[
\left| \int_{-\xi - R}^{-i\xi + R} e^{-x^2} \, dx \right| \leq \text{length} \cdot \text{(sup on curve)} \leq |\xi| \cdot e^{-R^2} \cdot e^{\xi^2} \to 0 \quad \text{as} \ R \to +\infty
\]

Thus,

\[
0 = \lim_{R \to \infty} 0 = \lim_{R \to \infty} \int_{B_R} e^{-ix} e^{-x^2} \, dx = \lim_{R \to \infty} \left(e^{i\xi^2} \int_{-\xi - R}^{-i\xi + R} e^{-x^2} \, dx - e^{-\xi^2} \int_{-R}^{-\infty} e^{-x^2} \, dx \right)
\]
so
\[\int_{-\infty}^{\infty} e^{-x^2} \, dx = e^{-\frac{x^2}{2}} \cdot \int_{-\infty}^{\infty} e^{-x^2} \, dx = e^{-\frac{x^2}{2}} \cdot \sqrt{\pi} \]

This is worth remembering. ///

[03.9] Compute \(\int_{-\infty}^{\infty} e^{-ix} \, dx \)

This is the Fourier transform of \(x \to xe^{-x^2} \). We can reduce it to the previous, slightly simpler, computation by an integration by parts:

\[\int_{-\infty}^{\infty} e^{-ix} \, dx = -\frac{1}{2} \int_{-\infty}^{\infty} e^{-ix} \frac{d}{dx} e^{-x^2} \, dx = \frac{1}{2} \int_{-\infty}^{\infty} \frac{d}{dx} e^{-ix} \cdot e^{-x^2} \, dx \]

Thus,

\[\int_{-\infty}^{\infty} e^{-ix} \, dx = -\frac{1}{2} i \xi \int_{-\infty}^{\infty} e^{-ix} e^{-x^2} \, dx = -\frac{1}{2} i \xi \cdot e^{-\frac{\xi^2}{4}} \cdot \sqrt{\pi} \]

The integration by parts device is worth remembering. ///

[03.10] For continuous \(\varphi \) on the unit circle \(|z| = 1 \), define

\[f_\varphi(z) = \int_0^{2\pi} \frac{\varphi(e^{i\theta})}{e^{i\theta} - z} \, d\theta \quad \text{ (for } |z| < 1) \]

Show that \(f(z) \) is holomorphic. Give an example of \(\varphi \) not identically 0 so that \(f_\varphi \) is identically 0.

Use Morera’s theorem: with \(\gamma \) be a small counter-clockwise triangle around a given \(z_0 \) in the open unit disk,

\[\int_\gamma f_\varphi(z) \, dz = \int_0^{2\pi} \varphi(e^{i\theta}) \left(\int_\gamma \frac{dz}{e^{i\theta} - z} \right) d\theta = \int_0^{2\pi} 0 \, d\theta = 0 \]

Morera’s theorem says that this vanishing implies holomorphy of \(f_\varphi \). ///

Note that the given integral is not quite a written-out version of Cauchy’s kernel, because \(d(e^{i\theta}) = i\theta \, e^{i\theta} \, d\theta \), so a factor of \(e^{i\theta} \) is missing. Nevertheless, it’s close. Thus, various heuristics might suggest making \(\varphi(e^{i\theta}) \) be the boundary value of an anti-holomorphic function such as \(F(z) = \bar{z} \). Thus, \(\varphi(e^{i\theta}) = F(e^{i\theta}) = e^{-i\theta} \). For \(|z| < 1 \), expanding a geometric series:

\[f_\varphi(z) = \int_0^{2\pi} \frac{\varphi(e^{i\theta})}{e^{i\theta} - z} \, d\theta = \int_0^{2\pi} \frac{e^{-i\theta}}{e^{i\theta} - z} \, d\theta = \int_0^{2\pi} \frac{e^{-i\theta}}{1 - ze^{-i\theta}} \, d\theta = \sum_{n=0}^{\infty} \int_0^{2\pi} e^{-2i\theta} \left(ze^{-i\theta} \right)^n \, d\theta \]

\[= \sum_{n=0}^{\infty} z^n \int_0^{2\pi} e^{-i(2n+1)\theta} \, d\theta = \sum_{n=0}^{\infty} z^n \cdot 0 = 0 \]

Thus, with hindsight, \(\varphi(e^{i\theta}) = 1 \) would also have given \(f_\varphi = 0 \). ///

[03.11] Show that a real-valued holomorphic function is constant.

Discussion: There are several possible arguments. First, via Cauchy-Riemann equations: for \(f \) real-valued on a neighborhood of \(z_0 \), taking a derivative along a real direction, but also along a purely imaginary direction, gives

\[f'(z_0) = \lim_{\varepsilon \to 0} \frac{f(z_0 + \varepsilon) - f(z_0)}{\varepsilon} = \lim_{\varepsilon \to 0} \frac{f(z_0 + i\varepsilon) - f(z_0)}{i\varepsilon} \quad \text{(with } \varepsilon \text{ real)} \]
The first limit is real, the second imaginary, so the equality implies that they are both 0. Thus, \(f' = 0 \), and \(f \) is constant. ///

Second, we can use the open mapping theorem: the real line contains no (non-empty) open sets of \(\mathbb{C} \), so a real-valued holomorphic functions must be constant. ///

Another kind of argument, applicable to \textit{entire} functions with constrained values: for \(f \) entire and real-valued, the function \(F(z) = e^{if(z)} \) takes values on the unit circle. In particular, \(F \) is \textit{bounded} and entire, so \textit{constant}, by Liouville. Then \(0 = F'(z) = if'(z) e^{if(z)} \), so \(f'(z) = 0 \), and \(f \) is constant. ///

\[03.12\] Show that a holomorphic function \(f \) with \(|f(z)| = 1 \), for all \(z \), is constant.

\textbf{Discussion:} The open mapping succeeds: the unit circle contains no (non-empty) open subsets of \(\mathbb{C} \), so any such \(f \) is constant. ///

\[03.13\] Show that a holomorphic function on \(\mathbb{C} \) taking values in the upper half-plane is constant.

\textbf{Discussion:} Again, the inverse Cayley map \(C^{-1}(z) = \frac{-iz-i}{iz+1} \) (or similar) maps the upper half-plane to the unit disk. It is a holomorphic map, and compositions of holomorphic are holomorphic (because the same is true of complex-differentiable maps), so \(C^{-1} \circ f \) is entire. It is bounded, because it takes values in the unit disk, so by Liouville it is constant. ///

\[03.14\] Let \(C \) be the usual Cantor set

\[C = \{x \in [0,1] : \text{the ternary expansion of } x \text{ contains only digits 0 and 2, digit 1} \} \]

where terminal repeating 1’s (\ldots11111\ldots) are converted to \ldots2. Show that there is no non-constant holomorphic function with real part taking values in \(C \).

\textbf{Discussion:} One decisive approach is to invoke the open mapping theorem: images of opens under non-constant holomorphic functions are open. The Cantor set contains no non-empty open subsets. For that matter, we have already observed that any \(\mathbb{R} \)-valued holomorphic function is constant, for the same reasons. ///

\[03.15\] Let \(f \) be an entire function such that \(f(z+1) = f(z) \) and \(f(z+i) = f(z) \) for all \(z \). Show that \(f \) is constant.

\textbf{Discussion:} First, the given \textit{periodicity relations} imply that all the values of \(f \) are determined by its values on \(R = \{z = x + iy : 0 \leq x \leq 1, \ 0 \leq y \leq 1\} \): given \(x, y \), there are unique integers \(m, n \) such that \(m \leq x < m+1 \) and \(n \leq y < n+1 \). By the obvious induction,

\[f(x + iy) = f((x - m) + i(y - n)) \]

while \(0 \leq x - m < 1 \) and \(0 \leq y - n < 1 \). On the compact set \(0 \leq x \leq 1 \) and \(0 \leq y \leq 1 \), the continuous function \(f \) is \textit{bounded}. Thus, \(f \) is entire and bounded, so by Liouville, it is constant. ///