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1. Path integrals

The idea of an integral
∫
γ
f of a function along a path γ in an open subset Ω of C is an extension of the

idea of an integral on an interval [a, b] ⊂ R, and expressible as a limit of Riemann sums. The limit must be
shown to exist. In fact, path integrals are expressible as integrals on intervals, as below.

Simultaneously, we expect a relation to complex differentiation, extending the fundamental theorem of single-
variable calculus: when f = F ′ for complex-differentiable F on open set Ω, it should be that, for any path
γ from z1 to z2 inside Ω, ∫

γ

F ′ = F (z2)− F (z1)

Proof of this will reduce to the single-variable calculus situation.

[1.1] Riemann-sum version of path integral Given a smooth curve γ connecting two points z1 and z2
in an open set Ω ⊂ C, and a continuous C-valued function f on Ω, one natural notion of

∫
γ
f would be as

a limit of Riemann sums, as follows. Given δ > 0, choose points w1 = z1, w2, w3, . . . , wn−1, wn = z2 on γ so
that |wj − wj+1| < δ, and form the Riemann sum

f(w1) ·(w2−w1)+f(w2) ·(w3−w2)+f(w3) ·(w3−w2)+ . . .+f(wn−2) ·(wn−1−wn−2)+f(wn−1) ·(wn−wn−1)

The limit of such sums as δ → 0 for continuous f and for sufficiently nice paths γ exists, for reasons similar
to that for ordinary Riemann integrals. In fact, we prove this by reducing to the single-variable calculus
situation, as follows.

[1.1.1] Remark: The choice of wj − wj−1 rather than wj−1 − wj is meant to suggest that the direction of
the path integral is from z1 to z2. Indeed, writing −γ for the path γ traversed in the opposite direction,
almost by definition ∫

−γ
f = −

∫
γ

f

[1.2] Path integrals on parametrized paths A parametrized path γ in an open set Ω ⊂ C is a nice
function γ : [a, b] → Ω for some interval [a, b] ⊂ R. Here nice probably means piecewise-differentiable:
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γ is continuous throughout [a, b], and [a, b] breaks into finitely-many subintervals on each of which γ is
continuously differentiable.

[1.2.1] Proposition: For continuous, complex-valued f on Ω and nice parametrized path γ : [a, b] → Ω,
the path integral

∫
γ
f of f along γ expressed as a limit of Riemann sums, is expressible in terms of the

parametrization, as∫
γ

f =

∫ b

a

f(γ(t)) γ′(t) dt (where γ′(t) = d
dtγ(t) as expected)

Proof: The point is that Riemann sums directly on the curve are equal to Riemann sums on [a, b], via the
parametrization. The factor γ′(t) is the limiting case of the multiplication by differences wj − wj−1 in the
direct Riemann sum version.

Consider γ(t) = x(t) + iy(t) with once-continuously-differentiable real-valued functions x(t), y(t). Given
δ > 0, choose a = t1 < t2 < . . . < tn = b on [a, b] such that |γ(tj) − γ(tj−1)| < δ, using the uniform
continuity of γ on the bounded interval [a, b]. The mean value theorem applied to functions x(t), y(t) shows
that γ(tj+1)− γ(tj) is well approximated by γ′(tj)(tj+1 − tj):

γ(tj)− γ(tj−1)

tj+1 − tj
− γ′(tj) → 0 (as tj+1 − tj → 0)

Again because [a, b] is bounded, this limit behavior is uniform: given ε > 0, there is η > 0 such that

∣∣∣γ(t)− γ(τ)

t− τ
− γ′(τ)

∣∣∣ < ε (for t 6= τ in [a, b] with |t− τ | < η)

Thus, the direct Riemann sum is well approximated by a modified form:∣∣∣∑
j

f(γ(tj))(γ(tj+1)− γ(tj)) −
∑
j

f(γ(tj))γ
′(tj)(tj+1 − tj)

∣∣∣ < ε ·
∑
j

∣∣f(γ(tj))
∣∣ · (tj+1 − tj)

The modified Riemann sum
∑
j f(γ(tj))γ

′(tj)(tj+1 − tj) is exactly a Riemann sum for the parametrized-
path integral. The right-hand side in the inequality is ε times a Riemann sum for the real-valued function
t → |f(γ(t))|, and these Riemann sums converge to a finite number. Since ε is as small as desired, the left
hand side goes to 0. Thus, Riemann sums for the parametrized-path integral converge to the same limit as
the Riemann sums for the directly-defined path integral. ///

[1.2.2] Remark: The previous discussion also shows that the path integral does not depend on the
parametrization. Independence of path parametrization can also be proven directly by changing variables,
from the chain rule:

Let γ2 : [a2, b2] → Ω and ϕ : [a2, b2] → [a, b] differentiable such that γ ◦ ϕ = γ2. Unwinding the definitions,
and using the chain rule, with u = ϕ(t),

∫
γ2

f =

∫ b2

a2

f(γ2(t)) γ′2(t) dt =

∫ b2

a2

f(γ ◦ ϕ(t)) (γ ◦ ϕ)′(t) dt

=

∫ b2

a2

f(γ ◦ ϕ(t)) γ′(ϕ(t)) dϕ(t) =

∫ b

a

f(γ(u)) γ′(u) du =

∫
γ

f

proving independence of parametrization.
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[1.3] Example From Euler’s identity, the unit circle can be parametrized by γ(t) = eit with t ∈ [0, 2π].
For integers n,

∫
γ

zn =

∫ 2π

0

(eit)n
deit

dt
dt =

∫ 2π

0

enit ieit dt =

∫ 2π

0

i e(n+1)it dt =


[
i
]2π
0

= 2πi (for n = −1)[ i e(n+1)it

(n+ 1)i

]2π
0

= 0 (for n 6= −1)

[1.4] Primitives and independence of path Path integrals and complex differentiation have the same
relation as the fundamental theorem of calculus gives for integrals and derivatives on intervals, namely,∫ b
a
F ′ = F (b)− F (a).

For f on Ω, a complex-differentiable function F on Ω with F ′ = f is a primitive of f . For any parametrization
γ : [a, b]→ Ω of a path from z1 to z2, by the usual fundamental theorem of calculus,∫

γ

F ′ =

∫ b

a

F ′(γ(t)) γ′(t) dt =

∫ b

a

d

dt
F (γ(t)) dt = F (γ(b))− F (γ(a)) = F (z2)− F (z1)

Thus, when f has a primitive, any path integral of f only depends on the endpoints.

A path γ : [a, b]→ Ω is closed when γ(a) = γ(b). When f has a primitive, its integral over any closed path
is 0.

[1.5] Continuity When two paths γ1, γ2 are sufficiently close, for any continuous f the integrals
∫
γ1
f

and
∫
γ2
f should be close.

Perhaps surprisingly, the two curves must be close not only in the sense that the sets γ1[a, b] and γ2[a, b]
are suitably close, but also the derivatives γ′1 and γ′2 must be close. More precisely, for both paths map
from [a, b], and if |γ1(t) − γ2(t)| < ε and |γ′1(t) − γ′2(t)| < ε′ for all t ∈ [a, b], then, using the identity
aA− bB = a(A−B) + (a− b)B,

∣∣∣ ∫
γ1

f −
∫
γ2

f
∣∣∣ ≤ ∫ b

a

∣∣f(γ1(t))γ′1(t)− f(γ2(t))γ′2(t)
∣∣ dt

≤
∫ b

a

∣∣f(γ1(t))| ·
∣∣γ′1(t)− γ′2(t)

∣∣ dt+

∫ b

a

∣∣f(γ1(t))− f(γ2(t))
∣∣ · ∣∣γ′2(t)

∣∣ dt < ε′ · |b− a| · C + ε · |b− a| · C ′

where C is the maximum of the continuous function |f | on a compact region containing γ1, γ2, and C ′ is the
maximum of |γ′2| on such a region. Thus, making ε, ε′ small makes the difference of path integrals small.

[1.6] Approximations by polygons Cauchy’s theorem, below, proves a fundamental property of path
integrals over triangles. The corresponding fundamental result follows for polygons. The result for smooth
curves, and finitely-piecewise continuously differentiable curves, requires expression of these curves as suitable
limits of polygons.

The original limit-of-Riemann-sum definition of a path integral, and expression as parametrized-path integral,
almost accomplished this.

Again, given a smooth curve γ connecting two points z1 and z2 in an open set Ω ⊂ C, and a
continuous C-valued function f on Ω,

∫
γ
f is a limit of Riemann sums. For δ > 0, choose points

w1 = z1, w2, w3, . . . , wn−1, wn = z2 on γ so that |wj − wj+1| < δ, and form the Riemann sum as earlier:

f(w1) · (w2 − w1) + f(w2) · (w3 − w2) + . . .+ f(wn−2) · (wn−1 − wn−2) + f(wn−1) · (wn − wn−1)
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By uniform continuity of f on an open set with compact closure containing the path, given ε > 0, for δ small
enough, |f(z)− f(wj−1)| < ε for all z on the straight line segment `j from wj−1 to wj , so∣∣∣ ∫

`j

f − f(wj−1) ·
∫
`j

1
∣∣∣ < ε · |wj − wj−1|

and ∣∣∣ ∫
γ

f −
∑
j

∫
`j

f
∣∣∣ < ε ·

∑
j

|wj − wj−1|

Obviously, the straight line segments `j assemble to a polygon approximating γ. The situation suggests
that the limit as δ → 0+ of

∑
j |wj − wj−1| is the length of γ. This will follow from the finitely-piecewise

continuous differentiability of γ.

It suffices to consider one of the finitely-many continuously differentiable pieces of γ, thus, we take
γ : [a, b]→ Ω continuously differentiable without loss of generality. We claim that

lim
δ→0

∑
j

|wj − wj−1| =

∫ b

a

|γ′(t)| dt

With γ(tj) = wj , by the uniform continuity of the derivative,

wj − wj−1
tj − tj−1

− γ′(tj−1) −→ 0 (uniformly, as δ → 0)

Thus, for given ε > 0, for small enough δ > 0,∣∣∣∑
j

|wj − wj−1| −
∑
j

|γ′(tj−1)| · (tj − tj−1)
∣∣∣ < ε ·

∑
j

|tj − tj−1| = ε · |b− a| −→ 0

The Riemann sum involving γ′ goes to
∫ b
a
|γ′(t)| dt. ///

[1.6.1] Remark: More generally, curves γ for which the limit of the sum
∑
j |wj−wj−1| exists are rectifiable.

There do exist continuous but not-rectifiable curves. We need at-worst finitely-piecewise continuously
differentiable curves, so worry about further possibilities is not necessary.

[1.7] The trivial estimate on path integrals This gives a simple, useful upper bound for
∫
γ
f :

[1.7.1] Claim: ∣∣∣ ∫
γ

f
∣∣∣ ≤ sup

z∈γ
|f | · length(γ)

Proof: This arises from the corresponding assertion for real-variables calculus: with γ : [a, b] → C,
approximating a complex integral’s absolute value by the integral of the absolute value,

∣∣∣ ∫
γ

f
∣∣∣ =

∣∣∣ ∫ b

a

f(γ(t)) γ′(t) dt
∣∣∣ ≤ ∫ b

a

|f(γ(t))| · |γ′(t)| dt ≤ sup
z∈γ
|f | ·

∫ b

a

|γ′(t)| dt = sup
z∈γ
|f | · length(γ)

as claimed. ///
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2. Cauchy’s theorem

The theorem is that the path integral of a complex-differentiable complex-valued function f on a region
Ω, over a path γ that can be contracted to a point inside Ω, is 0. Goursat eliminated superfluous further
hypotheses.

The base case is γ the boundary of a triangle sitting inside Ω, traced counter-clockwise.

[2.0.1] Theorem:
∫
γ
f = 0.

Proof: Subdivide the given triangle T0 by connecting the midpoints of the sides of the given triangle T0 to
each other, forming four similar half-sized triangles. The path integral of f over the whole triangle is the sum
of the path integrals over the four similar triangles, since the added-on paths are traced in both directions,
so cancel. Of these four, let T1 be the triangle maximizing the absolute value of the path integral around it.

Subdivide T1 similarly into four similar half-sized triangles, and of these let T2 be the triangle maximizing
the absolute value of the path integral around it. Continue.

The nested triangles T0 ⊃ T1 ⊃ T2 ⊃ . . . have a unique intersection point zo, since the diameter of Tn is 2−n

times the diameter of T0. Indeed, any choice of points wn ∈ Tn is a Cauchy sequence, since the diameters
are repeatedly halved, and every such choice has the same limit, for the same reason.

Let γn be the path integral around Tn, counter-clockwise. Complex-differentiability of f at zo asserts that,
given ε > 0, there is δ > 0 such that∣∣∣f(z)− f(zo)− f ′(zo)(z − zo)

∣∣∣ < ε · |z − zo| (for all z with |z − zo| < δ)

Let rn = maxz∈γn |z − zo| denote the radius of γn about zo. Given ε > 0, choose n sufficiently large so that
rn < δ. Then∣∣∣ ∫
γn

f(z)−f(zo)−f ′(zo)(z−zo) dz
∣∣∣ < ε ·rn · length γn = ε · (2−n r0) · (2−n · length γ) (for z ∈ γn)

It is easy to check that the path integrals
∫
γ
f of constants and linear functions f around triangles are 0,

since it is easy to find primitives for such f : 1 = (z)′ and z = (z2/2)′. For a triangular path γ′ with vertices
a, b, c and F a primitive for a given function,∫

γ′
F ′ dz =

(
F (b)− F (a)

)
+
(
F (c)− F (b)

)
+
(
F (a)− F (c)

)
= 0

Thus, ∣∣∣ ∫
γn

f
∣∣∣ < 4−n · ε · r0 · length γ (for z ∈ γn)

At each step, Tn maximized the absolute value of the path integral, so∣∣∣ ∫
γ

f
∣∣∣ ≤ 4n ·

∣∣∣ ∫
γn

f
∣∣∣ < 4n · 4−n · ε · r0 · length γ = ε ·

(
r0 · length γ

)
This holds for every ε > 0, so

∫
γ
f = 0. ///

[2.0.2] Corollary: For a polygon P in a convex set Ω and γ the path integral around P traced counter-
clockwise, for f complex-differentiable on Ω,

∫
γ
f = 0.
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Proof: Pick some point zo in Ω, and form triangles from zo and every pair of consecutive vertices of P . These
triangles lie inside Ω since it is convex. The sum of the (counter-clockwise) integrals over these triangles is
the integral over Γ, since the added-on paths are traced in both directions, so cancel. The integral over each
triangle is 0, by Cauchy’s theorem. ///

[2.0.3] Corollary: For a finitely-piecewise continuously differentiable closed curve γ in a convex set Ω and
γ the path integral around P traced counter-clockwise, for f complex-differentiable on Ω,

∫
γ
f = 0.

Proof: Approximate γ by polygons inside Ω. ///

[2.0.4] Remark: Unsurprisingly, the same argument works under a weaker hypothesis than convexity: for
Ω and γ starlike about z, meaning that the line segment connecting z to any other point of Ω lies entirely
inside Ω, and the line segment connecting z to any point of γ meets γ only at that point.

[2.0.5] Remark: Ever-more complicated, weaker hypotheses on the topology of γ and Ω still allow the
conclusion

∫
γ
f = 0. A simple useful case is that γ is contractible in Ω, meaning that it can be (piece-wise

smoothly!) shrunk down to a point without passing outside Ω.

3. Cauchy’s formula/integral representation

Again, the base case involves the very simplest paths, for example, triangles:

[3.0.1] Theorem: For f complex differentiable near z, for γ a counter-clockwise path around a triangle
having z in its interior,

f(z) =
1

2πi

∫
γ

f(w)

w − z
dw

Proof: The function

F (z) =
f(z)− f(zo)

z − zo
is complex-differentiable where f is, except possibly zo. Let γ′ be the path counterclockwise around a small
triangle T ′ about zo, entirely inside the larger triangle T . Connect the vertices of T ′ to those of T . As in
earlier episodes, the sum of path integrals over the boundaries of the three resulting quadrilaterals and the
boundary γ′ of T ′ is the integral over γ, because the interior paths are traversed in both directions, so cancel.

Cauchy’s theorem for nice polygons above shows that the integral over each quadrilateral is 0. Thus,∫
γ

F =

∫
γ′
F

Using continuity of F at zo, given ε > 0 there is δ > 0 such that |F (z) − F (zo)| < ε for |z − zo| < δ. With
T ′ chosen small enough to be inside the disk of radius δ at zo,∣∣∣ ∫

γ′
F (z)− F (zo) dz

∣∣∣ < ε · length γ′ ≤ ε · 6δ

Again, the integral of the constant F (zo) around a closed path is 0. Thus, the integral of F itself is smaller
than every ε > 0, and is necessarily 0. Thus, relabelling the variables to better express our intent,

0 =
1

2πi

∫
γ

f(w)− f(z)

w − z
dw =

1

2πi

∫
γ

f(w)

w − z
dw − f(z) · 1

2πi

∫
γ

1

w − z
dw
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Again, the value of the integral of 1/(w − z) around T is equal to that counter-clockwise around a small
triangle T ′ enclosing z.

There are many ways to show that this integral is 2πi. One way is to put an even-smaller circular path σ
around z, and connect it to the small triangle by lines, cutting the part of T ′ outside σ into convex regions.
Applying Cauchy’s theorem to the complex-differentiable function w → 1

w−z on each of these, as in other

episodes, the integral around T ′ is equal to that around σ. Parametrize σ : [0, 2π]→ Ω by σ(t) = z + r · eit,
so, with fixed z, ∫

σ

dw

w − z
=

∫ 2π

0

d(z + reit

(z + reit)− z
=

∫ 2π

0

ireit dt

reit
=

∫ 2π

0

i dt = 2πi

This proves Cauchy’s formula for triangles. ///

[3.0.2] Corollary: Complex-differentiable f is infinitely differentiable, and

f ′(z) =
1

2πi

∫
γ

f(w)

(w − z)2
dw

f ′′(z) =
2

2πi

∫
γ

f(w)

(w − z)3
dw

f ′′′(z) =
3!

2πi

∫
γ

f(w)

(w − z)4
dw

and, generally,

f (n)(z) =
n!

2πi

∫
γ

f(w)

(w − z)(n+1)
dw

Proof: The integral in the Cauchy formula on a small triangle around a given point is infinitely-differentiable
with respect to z, so f is. Differentiating under the integral with respect to z gives the formulas for the
derivatives.

Differentiating under the integral is obviously necessary, and immediately gives the conclusion. In this
particular example, because the dependence of the integrands on z is so simple, it is not hard to justify.
Namely, we guess the obvious expression for the derivative, and check the definition: first,

1

2πi

∫
γ

f(w)

w − (z + h)
dw − 1

2πi

∫
γ

f(w)

w − z
dw

h
− 1

2πi

∫
γ

f(w)

(w − z)2
dw

=
1

2πi

∫
γ

f(w) ·
( 1

w − (z + h)
− 1

w − z
h

− 1

(w − z)2

)
dw

The rational expression has the expected rearrangement

1

w − (z + h)
− 1

w − z
h

− 1

(w − z)2
=

(w − z)− (w − (z + h))

(w − (z + h))(w − z) · h
− 1

(w − z)2

=
1

(w − (z + h))(w − z)
− 1

(w − z)2
=

(w − z)− (w − (z + h))

(w − (z + h))(w − z)2
=

h

(w − (z + h))(w − z)2
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As h → 0, for z uniformly bounded away from w, this goes to 0 uniformly in z, w. Since f is continuous,
it is uniformly bounded on the compact set consisting of the curve γ. Thus, the definition of the derivative
being given by the expected formula is verified. ///

Weakening a convexity hypothesis: for the following corollary, a region Ω is starlike about z when the line
segment connecting z to any other point in Ω lies entirely inside Ω. A path γ inside starlike Ω is starlike
about z when the line segment connecting z to any point w on γ meets γ only at w.

[3.0.3] Corollary: For γ a starlike polygonal path about z, traced counter-clockwise, and f complex-
differentiable on a starlike Ω containing γ,∫

γ

f(w) dw

w − z
= 2πi · f(z)

Proof: Put a small triangle T around z, small enough so that, by continuity, reasonable choices of line
segments connecting the vertices to the vertices of the polygon lie inside Ω. The sum of the integrals over
the resulting triangles other than T are 0, by Cauchy’s theorem, and the integral around T gives 2πi f(z),
as just proven. ///

[3.0.4] Corollary: For γ a starlike finitely-piecewise continuously differentiable path about z, traced counter-
clockwise, and f complex-differentiable on a starlike Ω containing γ,∫

γ

f(w) dw

w − z
= 2πi · f(z)

Proof: Approximate γ by convex polygonal paths. ///

[3.0.5] Remark: The same arguments show in quite general situations that

1

2πi

∫
γ

f(w) dw

w − z
= f(z) · 1

2πi

∫
γ

dw

w − z

The latter integral is proven, in various ways, to be an integer, and is the winding number of γ around z,
which is meant to be the number of times γ goes around z. This is imprecise as it stands, but can be made
precise in various ways, the best ones involving a little algebraic topology.

A simple closed curve γ about z is one such that

1

2πi

∫
γ

dw

w − z
= 1

4. Power series expansions, Morera’s theorem

[4.0.1] Theorem: A function admitting a Cauchy integral representation

f(z) =
1

2πi

∫
γ

f(w)

w − z
dw

for some fixed simple closed path γ about z traced counter-clockwise, has a convergent power series expansion
for z near every zo inside γ:

f(z) =

∞∑
n=0

f (n)(zo)

n!
· (z − zo)n

8
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absolutely convergent for |z − zo| less than the distance from zo to γ.

[4.0.2] Remark: A function expressible as a convergent power series is called complex analytic.

Proof: This is just an expansion of a geometric series, interchange of sum and integral, and invocation of
Cauchy’s formulas for derivatives. For notational simplicity, take zo = 0 without loss of generality. Then

f(z) =
1

2πi

∫
γ

f(w)

w − z
dw =

1

2πi

∫
γ

f(w)

w(1− z
w )

dw =
1

2πi

∫
γ

f(w)
1

w

(
1 +

z

w
+
( z
w

)2
+ . . .

)
dw

=
∑
n≥0

1

2πi

∫
γ

f(w) dw

wn+1
· zn =

∑
n≥0

f (n)(0)

n!
· zn

Interchange of sum and integral is obviously necessary, and can be justified in various fashions. Let r be the
minimum distance from zo to γ. By Cauchy’s formulas, with γ parametrized by [0, 1],∣∣∣f (n)(zo)

n!

∣∣∣ ≤ ∫ 1

0

∣∣∣ f(γ(t)) · γ′(t)
(γ(t)− zo)n+1

∣∣∣ dt ≤ max
γ
|f | ·max |γ′| · 1

rn+1

Thus, the power series for f in z − zo is absolutely convergent for |z − zo| < r. ///

[4.0.3] Corollary: A complex differentiable function is infinitely differentiable.

Proof: Abel’s theorem. ///

[4.0.4] Note: From here on, we use complex differentiable and complex analytic as synonyms, and, in fact,
replace these by holomorphic, in part signifying that we have proved Cauchy’s basic results.

[4.0.5] Corollary: (Morera’s theorem) A continuous function f on an open set Ω with the property that
the path integrals

∫
γ
f of f over the boundaries γ of all sufficiently small triangles inside Ω (with interiors

inside Ω as well) is holomorphic.

Proof: The hypothesis is somewhat stronger than the conclusion of the basic form of Cauchy’s theorem
about vanishing of path integrals of complex-differentiable functions over triangles. Thus, the proof of
Cauchy’s integral formula applies to such f , proving

f(z) =
1

2πi

∫
γ

f(w) dw

w − z

for suitable γ enclosing z. Then the above arguments for infinite-differentiability of f and power series
expansions follow in the same way. ///

[4.0.6] Corollary: Let {fj} be a sequence of holomorphic functions on an open set Ω, uniformly convergent
on compacts in the sense that, for every compact K ⊂ Ω, given ε > 0, there is jo such that for i, j ≥ jo

sup
z∈K
|fi(z)− fj(z)| < ε

Then the pointwise limit f(z) = limj fj(z) exists and is itself holomorphic.

Proof: The uniform convergence on compacts implies pointwise convergence for each zo ∈ Ω, by taking
K = {zo} and noting that the sequence fj(zo) is Cauchy. Further, the limit f(z) = limj fj(z) is continuous:
given zo ∈ Ω and given ε > 0, fix a small K = {z : |z − zo| ≤ r}, and choose j large enough so that
|fj(zo)− f(zo)| < ε for all |z − zo| ≤ r, and δ > 0 small enough so that |fj(z)− fj(zo)| < ε for |z − zo| < δ.
Then

|f(z)− f(zo)| ≤ |f(z)− fj(z)|+ |fj(z)− fj(zo)|+ |fj(zo)− f(zo)| < ε+ ε+ ε

9
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If desired, this is easily rearranged to give ε rather than 3ε, proving continuity of the limit f throughout Ω.

With continuity in hand, we can certainly integrate f over boundaries of triangles and other simple closed
curves γ inside Ω. Since

∫
γ
fj = 0 for all j, and since (the image of) γ is compact, the integrals

∫
g
amfj go

to
∫
γ
f , which is therefore 0. By Morera’s theorem, f is holomorphic. ///

5. Identity principle

[5.0.1] Theorem: If holomorphic functions f, g on a connected open set Ω take the same values at distinct
points z1, z2, z3, . . . in Ω, and limj zj = zo ∈ Ω, then f = g throughout Ω.

Proof: First, one natural line of argument can be followed to its logical end: by continuity of f, g,

f(zo) = lim
j
f(zj) = lim

j
g(zj) = g(zo)

Equality of the first derivative at zo follows similarly:

f ′(zo) = lim
j

f(zo)− f(zj)

zo − zj
=

g(zo)− g(zj)

zo − zj
= g′(zo)

Perhaps it is feasible to express higher derivatives at zo as more complicated iterated difference quotients,
but this is best done in a somewhat repackaged form: consider h = f − g, a holomorphic function with
h(zj) = 0 and zj → zo. That is, inside every punctured disk 0 < |z − zo| < δ there is a zero of h. If h were
not identically 0, it would have a convergent power series

h(z) = cN (z − zo)N + cN+1(z − zo)N+1 + . . . (with cN 6= 0)

The idea is that for z very close to zo the (z − zo)N dominates the power series, but is not 0 for z 6= zo,
contradicting the assumption that h is not identically 0. Indeed, for some r > 0 the power series is absolutely
convergent for |z − zo| ≤ r, so certainly cnr

n → 0, so these numbers are bounded in absolute value, say by
C. For |zj − zo| = δ, with 0 < δ < r and δ < 1

2 ,∣∣∣ ∑
n≥N+1

cn(zj − zo)n
∣∣∣ ≤ C

∑
n≥N+1

δn ≤ C · δN+1

1− δ
≤ 2C · δN+1

Meanwhile,
|cN (zj − zo)N | = |cN | · δN

Taking j large enough such that δ is small enough so that |cN | · δN > 2C · δN+1, we have

|h(zj)| =
∣∣∣∑
n

cn(zj − zo)n
∣∣∣ ≥ |cN | · δN − 2C · δN+1 > 0

contradicting h(zj) = 0. Thus, h = f − g must have been identically 0. ///

[5.0.2] Example: Euler’s integral for the Gamma function is

Γ(s) =

∫ ∞
0

ts e−t
dt

t
(for Re(s) > 0)

For x > 0, by changing variables,∫ ∞
0

ts e−tx
dt

t
= x−s

∫ ∞
0

ts e−t
dt

t
= x−s · Γ(s)

10
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For y ∈ R, with z = x+ iy, consider

f(z) = f(x+ iy) =

∫ ∞
0

ts e−t(x+iy)
dt

t
=

∫ ∞
0

ts e−tz
dt

t

It no longer makes sense to change variables. The holomorphy of f(z) for Re(z) > 0 follows from Morera’s
theorem, for example. On the other hand, let

g(z) = (x+ iy)−s · Γ(s) = z−s · Γ(s)

with some sense of z−s deserving further discussion later. We have shown that f(x) = g(x) for all x > 0.
Presuming that g(z) is holomorphic, the identity principle gives an outcome as though change-of-variables
were legitimate:

z−s · Γ(s) = g(z) = f(z) =

∫ ∞
0

ts e−tz
dt

t
(for Re(z) > 0)

Indeed, writing

z−s = Γ(s)−1
∫ ∞
0

ts e−tz
dt

t
(for Re(z) > 0)

apparently defines an sth power of z.

6. Liouville’s theorem: bounded entire functions are constant

Among other applications, by this point we can prove that the complex numbers are algebraically closed,
that is, that every non-constant polynomial with complex coefficients has a complex zero, as a corollary of
Liouville’s theorem, itself a corollary of Cauchy’s results.

A holomorphic function defined on the entire complex plane is called entire.

[6.0.1] Theorem: (Liouville) A bounded entire function is constant.

Proof: The power series expansion of entire and bounded f converges for all z ∈ C, since the function is
entire.

With |f | ≤ C, from Cauchy’s formula integrating counter-clockwise over a large circle of radius R ≥ 2|z|,

|f (n)(z)| =
∣∣∣ n!

2πi

∫
|w|=R

f(w) dw

(w − z)n+1

∣∣∣ ≤ C

2π

∫ 2π

0

∣∣∣ iReit

(Reit − z)n+1

∣∣∣ dt ≤ C

2π
· 2π R

(R/2)n+1
≤ 2n+1C ·R−n

This is true for all R meeting the condition R ≥ 2|z|. As R→∞, for n > 0, this goes to zero. That is, the
power series expansion of f consists of the 0th term only, so f is constant. ///

[6.0.2] Corollary: A non-constant polynomial P (z) has a complex zero.

Proof: Without loss of generality, suppose P is monic: P (z) = zn + cn−1z
n−1 + . . .+ c0 had no 0, and let

f(z) = 1/P (z). By the usual quotient rule, and so on, f is complex-differentiable. Since

|P (z)| ≥ |z|n − |z|n−1 ·
(
|cn−1|+ . . .+ |c0|

)
|P (z)| ≥ |z|n/2 for |z| larger than R = 2(|cn−1|+ . . .+ |c0|), and |f(z)| ≤ 1/|z| for |z| ≥ R. On the compact
set |z| ≤ R the continuous function f is bounded. Thus, the complex-differentiable function f is entire and
bounded, so is constant, by Liouville. This is impossible, since P is of positive degree. ///

11
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7. Laurent expansions around isolated singularities

The basic Cauchy theory is disk-oriented, since power series converge in disks. The next simplest region
from this viewpoint is an annulus of inner radius r, outer radius R, about a point zo:

Ω = {z ∈ C : r < |z − zo| < R}

[7.1] Laurent expansions on an annulus

[7.1.1] Theorem: A holomorphic function f in the annulus Ω has a Laurent expansion

f(z) =
∑
n∈Z

cn (z − zo)n = . . .+ c−2(z − zo)−2 + c−1(z − zo)−1 + c0 + c1(z − zo) + c2(z − zo)2 + . . .

absolutely convergent in the annulus, uniformly on compact subsets. The Laurent coefficients cn are given
by

cn =


1

2πi

∫
γR

f(w) dw

(w − zo)n+1
(for n ≥ 0)

1

2πi

∫
γr

f(w) dw

(w − zo)−n+1
(for n < 0)

where γR any a circle about zo of radius slightly less than R, and γr is a circle about zo of radius slightly
more than r. These coefficients are unique, for r < |z − zo| < R.

[7.1.2] Remark: The positive-index terms give a power series convergent at least in |z − zo| < R, and the
negative-index terms give a power series in (z − zo)−1 convergent at least in |z − zo| > r.

Proof: Let γ be the path that first traverses γR, then to γr along a radial segment toward zo, traverses γr
backward, then back out to γR along the same radial segment. The two integrals along the radial segment
are in opposite directions, so cancel each other, giving∫

γR

f −
∫
γr

f =

∫
γ

f

Further, for z between γR and γr, Cauchy’s integral formula gives

f(z) =
1

2πi

∫
γ

f(w) dw

w − z
=

1

2πi

∫
γR

f(w) dw

w − z
− 1

2πi

∫
γr

f(w) dw

w − z
The integral over γR can be rearranged just as was done in the discussion of Cauchy’s formula for derivatives
and power series expansions on a disk, producing the non-negative-index terms in the Laurent expansion:

1

2πi

∫
γR

f(w) dw

w − z
=
∑
n≥0

1

2πi

∫
γR

f(w) dw

(w − zo)n+1
· (z − zo)n

However, here those integrals are not asserted to have any relation with derivatives of f . The integral over
γr can be rearranged in a similar way, but now using |z − zo| > |w − zo|:

− 1

2πi

∫
γr

f(w) dw

w − z
= − 1

2πi

∫
γr

f(w) dw

(w − zo)− (z − zo)
=

1

z − zo
· 1

2πi

∫
γr

f(w) dw

1− w − zo
z − zo

=
1

z − zo
· 1

2πi

∫
γr

f(w)
(

1 +
z − zo
w − zo

+
( z − zo
w − zo

)2
+ . . .

)
dw

=
∑
n>0

1

2πi

∫
γr

f(w) dw

(w − zo)n+1
· (z − zo)n =

∑
n<0

1

2πi

∫
γr

f(w) dw

(w − zo)−n+1
· (z − zo)−n

12
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This gives the asserted expression for the negative-index part of the Laurent expansion.

For uniqueness, let γ(t) = zo + ρ eit be a parametrized circle of radius ρ with r < ρ < R, traversed counter-
clockwise, and observe that

∫
γ

(w − zo)N dw =

∫ 2π

0

(ρ eit)N ρi eit dt = i ρN+1

∫ 2π

0

e(N+1)it dt =

 0 (for N 6= −1)

2πi (for N = −1)

An assumption of non-uniqueness of a Laurent expansion of any holomorphic function in the annulus would
give a non-trivial Laurent expansion of the identically-zero function. However, integrating both 0 and an
alleged Laurent expansion against (z − zo)N+1 shows that the N th coefficient of any Laurent expansion of
the zero function on the annulus is 0. This holds for all N . ///

[7.2] Example Laurent coefficients need not be computed from the integral formulas. Often, expanding
geometric series gives all one wants. An extreme case is rational functions, that is, ratios of polynomials.
For example, suppose we want the Laurent expansion of f(z) = 1

z−1 in the annulus 1 < |z| <∞.

1

z − 1
=

1

z
· 1

1− 1
z

=
1

z
·
∞∑
n=0

(1

z

)n
=

n=1∑
n=−∞

zn

[7.3] Isolated singularities A function f holomorphic on a set of the form Ω−{zo} where Ω is open and
zo is a point in Ω, is said to have an isolated singularity at zo. The simplest case of this is a punctured disk

{z ∈ C : 0 < |z − zo| < R}

which is an extreme case of an annulus, with inner radius 0.

[7.4] Removable singularities A singularity at zo is removable if f extends to a holomorphic function on
the whole disk |z − zo| < R.

[7.4.1] Corollary: For f bounded near zo, the isolated singularity at zo is removable.

Proof: The negative-index Laurent coefficients cn have bounds∣∣∣ 1

2πi

∫
γr

f(w) dw

(w − zo)−n+1

∣∣∣ ≤ 1

2π
·

sup|w−zo|=r |f(w)|
r−n+1

· (length γr) = sup
|w−zo|=r

|f(w)| · rn

As r → 0+ the values of f are bounded, so this goes to 0, proving that all the negative-index coefficients are
zero. Thus, the Laurent expansion in the punctured disk is actually a (convergent) power series expansion,
so is holomorphic, by Abel’s theorem. ///

[7.5] Poles When there are only finitely-many non-zero negative-index coefficients, the isolated singularity
is a pole. When a function f is holomorphic on Ω except for a discrete set of points in Ω, at which f has
poles (as opposed to a worse singularity), f is said to be meromorphic in Ω.

[7.5.1] Corollary: At a pole zo of an otherwise-holomorphic function f ,

lim
z→zo

|f(z)| = +∞

That is, the values of f become large in absolute value. Conversely, if |f(z)| → +∞ as z → zo, then the
Laurent expansion of f at zo has finitely-many negative-index coefficients, so the singularity is a pole.

13
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Proof: Let −N be the most-negative index so that the Laurent coefficient is non-zero. As z → zo, the
monomial (z − zo)−N eventually dominates the rest of the Laurent expansion, and in absolute value goes to
+∞.

On the other hand, if |f(z)| → +∞ at zo, then |1/f(z)| → 0, so has a removable singularity, and is of the form
1

f(z) = (z − zo)N · h(z) for h holomorphic and non-vanishing at zo. Inverting, by the quotient rule 1/h(z) is

complex-differentiable at zo, so has a convergent power series expression there. Then f(z) = (z−zo)−N · 1
h(z)

gives a Laurent series with finitely-many negative-index coefficients. ///

[7.6] Essential singularities Isolated singularities which are neither removable nor poles are called essential
singularities. Unlike poles, at which the values of a function become large, at an essential singularity the
behavior is more chaotic:

[7.6.1] Corollary: (Casorati-Weierstrass) Let zo be an essential singularity of otherwise-holomorphic f .
Then, given w1 ∈ C, given ε > 0 and δ > 0, there is z1 satisfying |z1 − zo| < δ and |f(z1)− w1| < ε.

Proof: The idea is to prove a converse: if there is some value w1 which f(z) stays away from throughout
some punctured disk 0 < |z − zo| < δ, then zo is either removable or a pole. Thus, consider

g(z) =
1

f(z)− w1

The hypothesis that f stays away from w1 assures that the denominator is bounded away from 0, so g(z)
is bounded near zo, so has a removable singularity there. Thus, f(z) = 1

g(z) + w1. If g(zo) 6= 0, then f

has a removable singularity there. If g(zo) = 0, since g(z) is not identically 0, then g(z) = (z − zo)N · h(z)
for some h holomorphic and non-vanishing at zo. Then 1/h(z) is again holomorphic at zo (by the quotient
rule!), so has a convergent power series expansion there. Then f(z) = w1 + (z− zo)−N 1

h(z) gives the Laurent

expansion of f , with finitely-many negative-index terms. ///

8. Residues and evaluation of integrals

The proof of uniqueness of Laurent expansions used the easy but profound fact that

∫
γ

(w − zo)N dw =

∫ 2π

0

(ρ eit)N ρi eit dt = i ρN+1

∫ 2π

0

e(N+1)it dt =

 0 (for N 6= −1)

2πi (for N = −1)

for γ a circle going counterclockwise around zo. As in earlier discussions, the same outcome holds for γ any
reasonable closed curve going once around zo counterclockwise. This was used above to show that, for f
holomorphic on 0 < |z − zo| < R with Laurent expansion

f(z) = . . .+c−2(z−zo)−2 +c−1(z−zo)−1 +c0 +c1(z−zo)+ c2(z−zo)2 + . . . (on 0 < |z − zo| < R)

and γ a small circle around zo traced counterclockwise,∫
γ

f = 2πi · c−1

It is traditional to name the −1th Laurent coefficient:

c−1 = Resz=zof = residue of f at zo

14
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[8.0.1] Proposition: Let γ be a simple closed curve in a convex open Ω, and f holomorphic on
Ω− {z1, . . . , zn} with finitely-many points zj inside Ω. Then∫

γ

f = 2πi ·
∑
j

Resz=zjf

Proof: The idea is to reduce to the case of small circles γj around zj . Indeed, connecting γj to γ by a line
segment traversed in to γj , then back out to γ, the path integrals of f inbound and outbound cancel, so∫

γ

f =
∑
j

∫
γj

f =
∑
j

2πiResz=zjf

as claimed. ///

A pointed observation about an important class of examples:

[8.0.2] Proposition: For f be holomorphic at z = zo,

Resz=zo
f(z)

z − zo
= f(zo)

More generally,

Resz=zo
f(z)

(z − zo)n+1
=

f (n)(zo)

n!

Proof: The power series expansion of f near zo is f(z) = f(zo) + f ′(zo)(z − zo) + f ′′(zo)
2! (z − zo)2 + . . ., so

f(z)

z − zo
=

f(zo)

z − zo
+ f ′(zo) +

f ′′(zo)

2!
(z − zo) + . . .

showing that the −1th Laurent coefficient is as claimed. The general case is argued similarly. ///

[8.0.3] Example: Many important definite integrals not appearing to refer to complex numbers are amenable
to evaluation by residues. The simplest example is the classic

I =

∫ ∞
−∞

dx

1 + x2

Of course,

I = lim
T→∞

∫ T

−T

dx

1 + x2

The trick is to approximate the integral over [−T, T ] by a closed-path integral, in this case by the path γT
that goes from −T to T on the real axis, then traces a semi-circle counter-clockwise in the upper half-plane
from T back to −T . For T > 1, this path encloses just the pole of f(z) = 1

1+z2 at z = i, so∫
γT

dz

1 + z2
= 2πi · Resz=i

1

1 + z2

From the obvious
1

1 + z2
= (z − i)−1 · 1

z + i

15
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with 1/(z + i) holomorphic at z = i, the proposition just above gives

Resz=i
1

1 + z2
=

1

z + i

∣∣∣
z=i

=
1

2i

Thus, by residues, ∫
γT

dz

1 + z2
= 2πi · Resz=i

1

1 + z2
= 2πi · 1

2i
= π

It may seem strange that for T > 1 the integrals over γT do not change as T → ∞, but that is a clear
consequence of the behavior of integrals over closed paths.

The next trick is to see that the integral over the semi-circles σT of radius T go to 0 as T →∞. The usual
crude estimate suffices:∣∣∣ ∫

σT

dz

1 + z2

∣∣∣ ≤ (length σT ) · max
z∈σT

1

|1 + z2|
= πT · 1

T (T − 1)
≤ π

T − 1
→ 0

Thus, ∫ ∞
−∞

dz

1 + z2
= lim

T

(∫
γT

dz

1 + z2
−
∫
σT

dz

1 + z2

)
= π − 0 = π

as we probably already knew for other reasons.

[8.0.4] Example: Let ξ be real, and consider [1]∫ ∞
−∞

eiξx dx

1 + x2
(with real ξ)

As in the previous example, where ξ = 0, we would like to compute this by residues, by looking at integrals
from −T to T and then over a semi-circle. Indeed, for ξ ≥ 0, the exponential is decreasing in size in the
upper half-plane, since

eiξ(x+iy) = eiξx · e−ξy

Thus, a nearly identical argument gives∫ ∞
−∞

eiξx dx

1 + x2
= 2πi · Resz=i

eiξz

1 + z2
= 2πi · e

iξz

z + i

∣∣∣
z=i

= 2πi · e
−xi

2i
= πe−ξ (for ξ ≥ 0)

However, for ξ < 0, the exponential blows up in the upper half-plane. Fortunately, the exponential gets
smaller in the lower half-plane. Thus, we use a semi-circle in the lower half-plane. Note that the whole
contour is now traced clockwise, so there will be a sign:∫ ∞
−∞

eiξx dx

1 + x2
= −2πi · Resz=−i

eiξz

1 + z2
= −2πi · e

iξz

z − i

∣∣∣
z=−i

= −2πi · e
−xi

−2i
= πeξ (for ξ < 0)

Accommodating both signs, ∫ ∞
−∞

eiξx dx

1 + x2
= πe−|ξ|

[8.0.5] Remark: It is infeasible to survey all the important examples of integration by residues in the
literature in this brief introduction.

[1] This integral is essentially a normalization of the Fourier transform of 1/(1 +x2), so has some significance in that

context, for example.
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9. Logarithms and complex powers

A logarithm L of a complex number z should satisfy eL = z. There is inevitable ambiguity: from Euler’s
identity eiθ = cos θ + i sin θ, so e2πi = 1, and

eL = z =⇒ eL+2πin = z (for all n ∈ Z)

That is, the imaginary part of log z is ambiguous by integer multiples of 2π. The real part of the logarithm
is unambiguous. Despite the ambiguity, for z = reiθ with r ≥ 0 and θ ∈ R, we call θ the argument of z.

[9.1] Principal branch of logarithm An unambiguous holomorphic logarithm can be defined in various
limited subsets Ω of C, although admittedly losing the property log(zw) = log z + logw. The property
preserved is that

d

dz
log z =

1

z

For example, for z ∈ C − (−∞, 0], let γz be a line segment connecting 1 to z, by γz(t) = tz + (1 − t), and
define the principal logarithm L(z) by

L(z) =

∫
γz

dw

w
=

∫ 1

0

(z − 1) dt

tz + (1− t)

The latter integral expression shows that L(z) is holomorphic on C− (−∞, 0]. Using this integral definition,
the property L(zw) = L(z) + L(w) holds only for pairs z, w such that the triangle ∆(z, w, zw) connecting
z, w, zw does not enclose 0:∫ zw

1

dw

w
=

∫ w

1
z

d(zw)

(zw)
=

∫ w

1
z

dw

w
=

∫ 1

1
z

dw

w
+

∫ w

1

dw

w
(for ∆(z, w, zw) not enclosing 0)

from Cauchy’s theorem! Then∫ 1

1
z

dw

w
+

∫ w

1

dw

w
=

∫ z

1

d(w/z)

(w/z)
+

∫ w

1

dw

w
=

∫ z

1

dw

w
+

∫ w

1

dw

w

showing that L(zw) = L(z) + L(w). When 0 is enclosed, the identity will be off by ±2πi, by the residue
theorem!

[9.2] Complex powers For z off (−∞, 0], and for complex α, we can define

zα = eL(z)·α (principal branch L(z) of logarithm)

However, just as with the principal branch of logarithm itself, we can be confident of (zw)α = zα · wα only
when the triangle z, w, zw does not enclose 0.

10. The argument principle

The ambiguity of argument and logarithm can be put to good use.

[10.0.1] Theorem: (Argument Principle) For holomorphic f not identically 0 in a region Ω, and γ a simple
closed curve whose interior is inside Ω,

1

2πi

∫
γ

f ′(w) dw

f(w)
= number of zeros of f inside γ, counting multiplicities
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[10.0.2] Remark: For holomorphic f(z) with power series c0 + c1(z − zo) + c2(z − zo)
2 + . . . with

c0 = c1 = . . . = cN−1 = 0, the multiplicity of the zero zo of f is N . A simple zero has multiplicity 1,
a double zero has multiplicity 2, and so on.

Proof: The function f ′(z)/f(z) is holomorphic away from the zeros of f inside γ, so, as usual, we reduce
to small circles around the zeros of f , and add up these contributions. With

f(z) = cN (z − zo)N + cN+1(z − zo)N+1 + . . .

with cN 6= 0,

f(z) = cN (z − zo)N
(

1 + . . .
)

Also,

f ′(z) = NcN (z − zo)N−1 + (N + 1)cN+1(z − zo)N + . . . = NcN (z − zo)N−1 ·
(

1 + . . .)

Thus,

f ′(z)

f(z)
= =

NcN (z − zo)N−1 · (1 + . . .)

cN (z − zo)N · (1 + . . .)
=

N

z − zo
· (1 + . . .) =

N

z − zo
+ holomorphic at zo

Thus, integrating counterclockwise alon a small circle γo around zo,∫
γo

f ′(z) dz

f(z)
=

∫
γo

( N

z − zo
+ holomorphic at zo

)
dz = 2πiN + 0

Adding these up over all the zeros zo gives the argument principle formula. ///

[10.0.3] Remark: An important variant of the argument principle comes from f ′(z)
f(z) = d

dz log f(z). The idea

is that traversing a small circle around a zero zo of order N of f causes the value f(z) to go around zero N
times, increasing the argument of f(z) by N · 2π in the course of returning to the original point.

11. Reflection principle

There is certainly no general promise that a holomorphic function defined (for example) on a half-plane, can
be extended to a holomorphic function on the whole plane, but under some straightforward hypotheses we
can extend across a line:

[11.0.1] Theorem: Let Ω be an open subset of the complex upper half-plane, such that the closure Ω meets
R in a non-empty (necessarily closed) interval [a, b] ⊂ R of positive length. Then any holomorphic f on Ω

extending to a continuous function on Ω ∪ (a, b), real-valued on (a, b), extends to a holomorphic function f̃
on the union of Ω, (a, b), and the image of Ω reflected across the real axis, that is, on

Ω ∪ (a, b) ∪ {z : z ∈ Ω}

The extension is defined on the reflected image by

f̃(z) = f(z) (for z ∈ Ω)

Proof: From its definition, the extension f̃ is readily seen to be holomorphic on the reflected image of Ω:

lim
h→0

f̃(z + h)− f̃(z)

h
= conjugate of lim

h→0

f(z + h)− f(z)

h

= conjugate of lim
h→0

f(z + h)− f(z)

h
= f ′(z)

18
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That is, the extension is complex-differentiable.

The assumption that f takes real values on (a, b) assures that the extension f̃ is well-defined and continuous
on Ω ∪ (a, b) ∪ {z : z ∈ Ω}. It remains to show that it is holomorphic at points of (a, b), for which we use a
version of Morera’s theorem.

That is, it suffices to show that the clockwise path integral around every (sufficiently small) square γ
around points on (a, b) is 0. Any such path can be split into two paths γ1, γ2, by connecting the
two points a′, b′ ∈ (a, b) where γ crosses (a, b), letting γ1 ⊂ Ω ∪ (a, b) traverse [a′, b′] left-to-right, and
γ2 ⊂ {z : z ∈ Ω} ∪ (a, b) traverse [a′, b′] from right to left. Thus,∫

γ

f̃ =

∫
γ1

f̃ +

∫
γ2

f̃ =

∫
γ1

f +

∫
γ2

f̃

Since f and f̃ are continuous, the part of γ1 on R can be moved slightly upward to be a path γ′1 properly
inside Ω from a′ + iδ to b′ + iδ for small δ > 0, while changing the path integral by a complex number of
size at most a given ε > 0, due to the uniform continuity of continuous f on the rectangle with vertices
a′, b′, a′ + iδ, b′ + iδ. Inside Ω, f is holomorphic, so the integral over the adjusted γ′1 is 0. The original

integral over γ1 by at most ε, so |
∫
γ1
f | < ε. This is true for every ε > 0, so

∫
γ1
f = 0. Similarly, since f̃ is

holomorphic in the interior of the reflection of Ω, the integral over γ2 is 0. Thus, the extension f̃ satisfies
the hypothesis of Morera’s theorem, and is holomorphic. ///
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