More basic results arising from Cauchy’s theorem

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/

[This document is
http://www.math.umn.edu/~garrett/m/complex/05_basics_contd.pdf]

1. Maximum modulus principle
2. Open mapping theorem
3. Rouché’s theorem

1. Maximum modulus principle

Recall that an open subset of a topological space, such as \(\mathbb{C} \), is connected if it cannot be expressed as a disjoint union of two non-empty subsets.

[1.0.1] Theorem: A non-constant \(f \) holomorphic on a non-empty, connected open set \(U \subset \mathbb{C} \), does not assume its maximum absolute value on \(U \).

Proof: One natural approach is to combine a hypothetical interior maximum of the absolute value with Cauchy’s formula expressing that interior value in terms of values on a circle enclosing it.

Given \(z_0 \in U \) and a neighborhood \(V \) of \(z_0 \), we show that there is \(z_1 \in V \) with \(|f(z_1)| > |f(z_0)| \). If not, then \(|f(z_1)| \leq |f(z_0)| \) for every \(z_1 \) on a small circle of radius \(r > 0 \) about \(z_0 \) fitting inside \(V \). Letting \(\gamma \) be that circle, traced counter-clockwise, Cauchy’s formula gives an inequality

\[
|f(z_0)| = \left| \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w-z} \, dw \right| \leq \frac{1}{2\pi} \int_{0}^{2\pi} |f(re^{it})| \, \left| \frac{d}{dt} re^{it} \right| \, dt = \frac{1}{2\pi} \int_{0}^{2\pi} |f(re^{it})| \, dt
\]

Since \(f \) is continuous, if \(|f(re^{it})| < |f(z_0)| \) at any single \(t \), then \(|f(re^{it})| < |f(z_0)| \) for \(t' \) in a small-enough neighborhood of \(t \in \mathbb{R} \), and the inequality following from Cauchy’s formula would be impossible.

Thus, to avoid this contradiction, \(|f(z_1)| = |f(z_0)| \) for all \(z_1 \) on every sufficiently small circle near \(z_0 \). Thus, \(|f(z)| \) is constant, equal to \(|f(z_0)| \), near \(z_0 \).

Of course, if this constant absolute value is 0, then \(f \) is identically 0 on a neighborhood of \(z_0 \), so is identically 0 on the connected set \(U \), by the identity principle.

If the constant absolute value is not 0, then there is a holomorphic logarithm \(L \) defined on a sufficiently small neighborhood of \(f(z_0) \), and \(L(f(z)) \) is a holomorphic, purely-imaginary-valued function on a neighborhood of \(z_0 \). For \(z \) in such a small neighborhood of \(z_0 \),

\[
\lim_{h \to 0} \frac{L(f(z+h)) - L(f(z))}{h} = (L \circ f)'(z) = \lim_{h \to 0} \frac{L(f(z + ih)) - L(f(z))}{ih} = (L \circ f)'(z) \quad (h \in \mathbb{R})
\]

That is, the derivative is both real and purely imaginary, so is 0. Thus, \(L \circ f \) is constant. From this, as usual, by taking a derivative,

\[
0 = (L \circ f)'(z) = f'(z) \cdot L'(f(z)) = f'(z) \cdot \frac{1}{f(z)}
\]

giving \(f'(z) = 0 \). Thus, an interior maximum absolute value implies that \(f \) is constant.

///

[1.0.2] Corollary: Let \(V \subset \mathbb{C} \) be a non-empty connected open with bounded closure \(\overline{V} \). The sup of non-constant holomorphic \(f \) on \(V \) extending continuously to \(\overline{V} \) occurs on the boundary \(\partial V \) of \(V \).
Proof: A continuous function on a compact set assumes its sup. Since \(f \) is non-constant, by the theorem this sup cannot occur in the \textit{interior} \(V \) of \(V \), so must occur on the boundary. ///

2. Open mapping theorem

[\textbf{2.0.1} Theorem:] A non-constant holomorphic function is an \textit{open} function, in the sense that it maps open sets to open sets.

\textbf{Proof:} This can be arranged as a corollary of the \textit{argument principle}.

Let \(f \) be holomorphic on a neighborhood \(U \) of \(z_o \), and let \(w_o = f(z_o) \), and where \(f(z) - w_o \) has a zero of multiplicity \(\mu \geq 1 \) at \(z_o \). We show that \(f(U) \) contains a neighborhood of \(w_o \), that is, that any \(w \) sufficiently near \(w_o \) is in \(f(U) \). To this end, consider an argument-principle integral which counts the number of zeros of \(f(z) - w_o \) inside a small simple closed curve \(\gamma \) around \(z_o \):

\[
\mu = \frac{1}{2\pi i} \int_{\gamma} d \log \left(f(z) - w_o \right) = \frac{1}{2\pi i} \int_{\gamma} \frac{f'(z) \, dz}{f(z) - w_o}
\]

The function

\[
g(w) = \frac{1}{2\pi i} \int_{\gamma} \frac{f'(z) \, dz}{f(z) - w}
\]

is \textit{holomorphic}, immediately from the definition of complex differentiability. At the same time, it is \textit{integer-valued}, by the argument principle, and takes value \(\mu \) at \(w_o \). Thus, \(g(w) \) is constant on a sufficiently small neighborhood of \(w_o \), so takes value \(\geq 1 \) on such a neighborhood. That is, every \(w \) in such a neighborhood is inside \(f(U) \). ///

3. Rouché’s theorem

[\textbf{3.0.1} Theorem:] Let \(f \) be holomorphic on an open set \(U \) containing a simple closed path \(\gamma \) and containing the interior of \(\gamma \). Suppose that \(f \) does not vanish on the path \(\gamma \). If another holomorphic function \(g \) on \(U \) satisfies

\[
|f(z) - g(z)| < |f(z)| \quad \text{(for all } z \text{ on } \gamma)\]

then the number of zeros of \(g \) inside \(\gamma \) is the same as the number of zeros of \(f \) inside \(\gamma \).

\textbf{Proof:} The function \(F = g/f \) is \textit{meromorphic} on \(U \) since the zeros of \(f \) are of finite order and cannot have an accumulation point in \(U \), by the identity principle. From the given inequality and from the non-vanishing of \(f \) on \(\gamma \),

\[
\left| 1 - \frac{g(z)}{f(z)} \right| < 1 \quad \text{(for } z \text{ on } \gamma)\]

That is, the values of \(F = g/f \) along \(\gamma \) stay inside the open disk \(D \) of radius 1 centered at 1. In particular, there is a holomorphic logarithm defined on \(D \), so by Cauchy’s theorem

\[
\int_{\gamma} \log F(z) \, dz = \int_{F \circ \gamma} \log w \, dw = 0
\]

On the other hand, by the argument principle,

\[
\left(\text{number of zeros of } F - \text{number of poles of } F \text{ inside } \gamma \right) = \frac{1}{2\pi i} \int_{\gamma} d \log F(z) = 0
\]
That difference is also
\[
\left(\text{number of zeros of } g - \text{number of zeros of } f \text{ inside } \gamma \right)
\]
even if some zeros of \(g \) cancel some zeros of \(f \) in the quotient \(F = g/f \). Thus, the number of zeros of \(g \) inside \(\gamma \) is the number of zeros of \(f \) there.

3.0.2 Corollary: (Continuity of zeros) Let \(f \) be a non-constant holomorphic function on an open set \(U \), \(h \) another holomorphic function on \(U \), and \(z_o \in U \) a simple zero of \(f \). Given \(\varepsilon > 0 \), for sufficiently small \(\delta > 0 \) there is a unique zero \(z_\delta \) of \(f + \delta h \) such that \(|z_o - z_\delta| < \varepsilon \).

Proof: Shrink \(\varepsilon > 0 \) if necessary so that \(f \) has no zeros on the circle of radius \(\varepsilon \) about \(z_o \). That circle is compact, so the continuous non-zero function \(z \to |f(z)| \) has a strictly positive minimum \(m \) there, and \(|h(z)| \) has a finite maximum \(M \) there. With \(0 < \delta < \frac{m}{M} \),
\[
|f(z) - (f(z) + \delta h(z))| = \delta \cdot |h(z)| < \frac{m}{M} \cdot M \leq m |f(z)| \quad \text{(for } |z - z_o| = \varepsilon) \]
By Rouché’s theorem, \(f + \delta h \) has the same number of zeros inside \(|z - z_o| = \varepsilon \) as does \(f \), namely, a single one.