Phragmén-Lindelöf Theorems

Paul Garrett
garrett@math.umn.edu
http://www.math.umn.edu/~garrett/

The paper that gave its name to these results is E. Phragmén, E. Lindelöf, *Sur une extension d’un principe classique de l’analyse*, Acta Math. 31 (1908), 381-406 proved the theorem here.

The maximum modulus principle can easily be misapplied on unbounded open sets. That is, while for an open set \(U \subset \mathbb{C} \) with bounded closure \(\overline{U} \), it does follow that the sup of a holomorphic function \(f \) on \(U \) extending continuously to \(\overline{U} \) occurs on the boundary \(\partial U \) of \(U \), holomorphic functions on an unbounded set can be bounded by 1 on the edges but be violently unbounded in the interior.

A simple example is \(f(z) = e^{e^{x+y}} \):

\[
|e^{e^{x+y}}| = e^{e^{x} \cos y}
\]

On one hand, for fixed \(y = \text{Im} \ z \) with \(\cos y > 0 \), the function blows up as \(x = \text{Re} \ z \to +\infty \). On the other hand, for \(\cos y = 0 \) the function is bounded. Thus, on the strip \(-\frac{\pi}{2} \leq y \leq \frac{\pi}{2} \), the function \(e^{e^{z}} \) is bounded on the edges but blows up as \(x \to +\infty \).

This example suggests growth conditions under which a bound of 1 on the edges implies the same bound throughout the strip. In fact, the suggested bound is essentially sharp.

[0.0.1] Theorem: For \(f \) a holomorphic function on the horizontal half-strip

\[
\{z : -\frac{\pi}{2} \leq y \leq \frac{\pi}{2} \text{ and } 0 \leq x\}
\]

satisfying

\[
|f(z)| \ll e^{C \text{Re} z} \quad \text{(for some constant } 0 \leq C < 1 \text{)}
\]

\(|f(z)| \leq 1\) on the edges of the half-strip implies \(|f(z)| \leq 1\) in the interior, as well.

Proof: Unsurprisingly, the proof is a reduction to the usual maximum modulus principle. Take any fixed \(D \) in the range

\[
C < D < 1
\]

The function

\[
F_\varepsilon(z) = f(z)/e^{\varepsilon e^{D \cdot x}} \quad \text{(for } \varepsilon > 0 \text{)}
\]

is bounded by 1 on the edges of the half-strip, and in the interior goes to 0 uniformly in \(y \) as \(x \to +\infty \), for fixed \(\varepsilon > 0 \), exploiting the modification with \(D \). Thus, on a rectangle

\[
R_T = \{z : -\frac{\pi}{2} \leq y \leq \frac{\pi}{2}, \text{ and } 0 \leq x \leq T\}
\]

for sufficiently large \(T > 0 \) depending upon \(\varepsilon \), the function \(F_\varepsilon \) is bounded by 1 on the edge. The usual maximum modulus principle implies that \(F_\varepsilon \) is bounded by 1 throughout. That is, for each fixed \(z_0 \) in the half-strip,

\[
|f(z_0)| \leq e^{\varepsilon e^{D \text{Re} z_0}} \quad \text{(for all } \varepsilon > 0 \text{)}
\]

Let \(\varepsilon \to 0^+ \), giving \(|f(z_0)| \leq 1\).

[0.0.2] Remark: Analogous theorems on strips of other widths follow by using \(e^{ce^z} \) with suitable constants \(c \).
An analogous theorem on a full strip, rather than half-strip, follows by using a function like \(e^{\cosh z} \) in place of \(e^{z} \), as follows.

[0.0.3] Theorem: For \(f \) a holomorphic function on the full horizontal strip

\[
\{ z : -\frac{\pi}{2} \leq \Im z \leq \frac{\pi}{2} \}
\]
satisfying

\[
|f(z)| \ll e^{C \cosh \Re z} \quad \text{(for some constant } 0 \leq C < 1)\]

\(|f(z)| \leq 1 \) on the edges of the strip implies \(|f(z)| \leq 1 \) in the interior, as well.

Proof: Again, reduce to the maximum modulus principle. Fix \(D \) in the range \(C < D < 1 \). The function

\[
F_\varepsilon(z) = \frac{f(z)}{e^{\varepsilon \cosh D z}} \quad \text{(for }\varepsilon > 0)\]

is bounded by 1 on the edges of the strip, and in the interior goes to 0 uniformly in \(y \) as \(x \to \pm \infty \), for fixed \(\varepsilon > 0 \). Thus, on a rectangle

\[
R_T = \{ z : -\frac{\pi}{2} \leq y \leq \frac{\pi}{2}, \text{ and } -T \leq x \leq T \} \quad \text{(for large } T > 0, \text{ depending upon } \varepsilon)\]

the function \(F_\varepsilon \) is bounded by 1 on the edge. The usual maximum modulus principle implies that \(F_\varepsilon \) is bounded by 1 throughout. That is, for each fixed \(z_o \) in the half-strip,

\[
|f(z_o)| \leq e^{\varepsilon \cosh D \Re z_o} \quad \text{(for all } \varepsilon > 0)\]

We can let \(\varepsilon \to 0^+ \), giving \(|f(z_o)| \leq 1 \). \(/// \)

The details of various adjustments can be made to disappear by strengthening the hypotheses:

[0.0.4] Corollary: Let \(f \) be a holomorphic function on a strip or half-strip, with a bound

\[
|f(z)| \ll e^{A|z|} \quad \text{(for some } A > 0)\]

If \(|f(z)| \leq 1 \) on the edges of the (half-)strip, then \(|f(z)| \leq 1 \) in the interior, as well. \(/// \)

[0.0.5] Remark: Further variations are easily possible, by additional adjustments of functions. For example, polynomial growth of a function \(f \) on the edges of a strip or half-strip can be accommodated by considering \(f(z)/(z - z_o)^M \) for \(z_o \) outside the strip, and large \(M \).