Infinitude of zeros in the critical strip

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/

[This document is http://www.math.umn.edu/~garrett/m/complex/notes_2014-15/09g_infinitude_of_zeros.pdf]

Hadamard’s theorem on canonical products yields a short proof that \(\zeta(s) \) has infinitely-many zeros in the critical strip \(0 \leq \text{Re}(s) \leq 1 \). This is essentially an echo of [Titchmarsh 1986], page 30, and some background.

Hadamard’s product theorem, for growth order \(\lambda \in \mathbb{R} \), asserts that for the integer \(h \) satisfying \(h \leq \lambda < h+1 \), an entire function \(f \) of order \(\lambda \) has product expansion

\[
f(z) = e^{g(z)} \cdot z^\nu \prod_{z_i} \left(1 - \frac{z}{z_i} \right) e^{p_h(z/z_i)}
\]

where \(\nu \) is the order of 0 at 0, \(z_i \) runs through non-zero zeros of \(f \), \(g(z) \) is a polynomial of degree at most \(h \), and \(p_h(z) \) is the \(h^{th} \) truncation of the Taylor series for \(\log(1-z) \), namely,

\[
p_h(z) = z + \frac{z^2}{2} + \frac{z^3}{3} + \ldots + \frac{z^h}{h}
\]

For \(h = 0 \), take \(p_0(z) = 0 \). Hadamard’s theorem controls the leading exponential: rather than being \(e^{g(z)} \) with some unfathomable entire function \(g(z) \), we have sharp constraints on \(g(z) \).

Thus, there is the peculiar corollary that entire functions of growth order \(\lambda < 1 \) have \(h = 0 \), so have very simple product expansions

\[
f(z) = e^a \cdot z^\nu \prod_{z_i} \left(1 - \frac{z}{z_i} \right) \quad \text{(for } f \text{ entire of order } \lambda < 1\text{)}
\]

for some constant \(a \). In particular, if \(f \) is not a polynomial, then it has infinitely-many zeros.

This corollary can be used to prove that \(\zeta(s) \) has infinitely-many zeros in the strip \(0 \leq \text{Re}(s) \leq 1 \), as follows.

From the functional equation, and from the fact that \(\Gamma(s) \) has no zeros, the only possible zeros of \(\xi(s) \) are in \(0 \leq \text{Re}(s) \leq 1 \).

Let \(\xi(s) = \pi^{-s/2} \Gamma(s/2) \zeta(s) \). In light of the functional equation \(\xi(1-s) = \xi(s) \) and the fact that \(\xi(s) \) has exactly two poles, at \(s = 0, 1 \), which are simple, the function \(s(1-s)\xi(s) \) is entire and still satisfies the same equation. That is \(z \to (\frac{1}{2} + z)(\frac{1}{2} - z)\xi(\frac{1}{2} + z) \) is entire and even. Thus, it is a function of \(z^2 \), and there is an entire function \(f \) such that

\[
f(z^2) = (\frac{1}{2} + z)(\frac{1}{2} - z)\xi(\frac{1}{2} + z)
\]

There is a traditionally-defined function \(\Xi(z) \) which differs from this \(f \) only in normalization. We have shown that \(\xi(s) \) is of growth-order 1, so \(f \) is of growth-order \(\frac{1}{2} \). Thus, by the corollary to Hadamard’s theorem, either \(f \) is a polynomial, or has infinitely-many zeros. If \(f(z) \) were a polynomial, then \(f(z^2) \) would be a polynomial, as well. But the super-polynomial growth of \(\pi^{-s/2} \Gamma(s/2)\zeta(s) \) for \(s \) real and \(s \to +\infty \) shows that this is impossible. Thus, \(f \) has infinitely-many zeros.