06. Implicit and inverse functions theorems

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/

[This file is http://www.math.umn.edu/~garrett/m/complex/notes_2020-21/06_fp_inverse_implicit.pdf]

1. Contractive-map fixed-point lemma
2. Inverse function theorem
3. Implicit function theorem
4. Real-differentiability versus complex-differentiability
5. Holomorphic inverse function theorem
6. Holomorphic implicit function theorem

1. Contractive-map fixed-point lemma

This is central to many existence and uniqueness results.

Let X be a complete metric space with distance function d. A continuous $f : X \to X$ is uniformly contractive when there is $0 < c < 1$ so that

$$d(f(x), f(y)) \leq c \cdot d(x, y) \quad (\text{for all } x, y \in X)$$

A fixed point of a map $f : X \to X$ is $x \in X$ such that $f(x) = x$. A point in X is an attractor for f when

$$\lim_{n \to \infty} f^n y = x \quad (\text{for all } y \in X)$$

Visibly, if an attractor exists, it is unique.

[1.1] Lemma: A uniformly contractive map $f : X \to X$ has a unique fixed point $x \in X$, and x is the (unique) attractor for f.

Proof: Given $y, z \in X$, the sequence

$$y, z, f(y), f(z), f^2(y), f^2(z), f^3(y), f^3(z), \ldots$$

is a Cauchy sequence. By completeness of X, $\lim_{n \to \infty} f^n(y) = \lim_{n \to \infty} f^n(z)$, for all $y, z \in X$. Let x be that common limit. By continuity of f,

$$f(x) = f(\lim_{n} f^n(y)) = \lim_{n} f(f^n(y)) = \lim_{n} f^n(y) = x$$

as desired. ///

2. Inverse function theorem

This is a corollary of the fixed-point lemma.

Recall that the derivative $Df(x_o)$ (evaluated) at $x_o \in \mathbb{R}^m$, of a function $f : U \to \mathbb{R}^n$ with open $U \subset \mathbb{R}^m$, if it exists, is a linear map $Df(x_o) : \mathbb{R}^m \to \mathbb{R}^n$ such that

$$f(x_o + h) = f(x_o) + Df(x_o)(h) + o(h) \quad (\text{as } |h| \to 0 \text{ with } h \in \mathbb{R}^m)$$
where \(|h| \) is the usual norm on \(\mathbb{R}^m \), and where \(o(h) \) is Landau’s little-o notation, meaning that

\[
\frac{1}{|h|} \cdot \left| f(x_o + h) - f(x_o) - Df(x_o)(h) \right| \to 0 \quad (\text{as } |h| \to 0)
\]

Differentiability, especially indefinite/infinite differentiability, can also be discussed in terms of partial derivatives.

Let \(U \subset \mathbb{R}^n \) be open, and \(f : \mathbb{R}^n \to \mathbb{R}^n \) a \(C^k \)-function.

[2.1] Theorem: Inverse Function Theorem: For \(x_0 \in \mathbb{R}^n \) such that \(f'(x_0) : \mathbb{R}^n \to \mathbb{R}^n \) is a linear isomorphism, there is a neighborhood \(V \subset U \) of \(x_0 \) so that \(f|_V \) has a \(k \)-times differentiable inverse on \(f(V) \).

Proof: For linear \(T : \mathbb{R}^n \to \mathbb{R}^n \) let \(|T| \) be the uniform operator norm

\[
|T| = \sup_{|v|=1} |Tv|
\]

Without loss of generality, \(x = 0 \), \(f(x_0) = 0 \), and \(Df(0) \) is the identity map \(1 : \mathbb{R}^n \to \mathbb{R}^n \). Letting \(F(x) := x - f(x) \), we have \(F'(0) = 0 \). By continuity, there is \(\delta_0 > 0 \) so that if \(|x| < \delta_0 \) then \(|F'(x)| < \frac{1}{2} \). Then there is \(0 < \delta < \delta_0 \) so that \(|X| < \delta \) implies \(|F(x)| \leq |x|/2 \). Thus, \(F \) maps the closed ball \(B_\delta \) to itself, and is contractive with constant \(c = \frac{1}{2} \), from

\[
|\Phi_y(x_1) - \Phi_y(x_2)| = |F(x_1) - F(x_2)| \leq |x_1 - x_2|/2 \quad \text{(for } x_1, x_2 \in B_\delta \text{)}
\]

invoking the one-dimensional Mean-Value Theorem and using \(|F'(x)| < \frac{1}{2} \).

By the fixed-point lemma, \(\Phi_y \) has a unique fixed point, the unique solution of the equation \(f(x) = y \), and the fixed point is an attractor. (Emphatically, \(|y| < \delta/2 \)).

For continuity of the inverse map \(\varphi := f^{-1} \), take \(x_1, x_2 \in B_\delta \). From \(|F'(x_1)| < \frac{1}{2} \) we obtain the last inequality in

\[
|x_1 - x_2| \leq |f(x_1) - f(x_2)| + |F(x_1) - F(x_2)| \leq |f(x_1) - f(x_2)| + \frac{1}{2}|x_1 - x_2|
\]

Then

\[
|x_1 - x_2| < 2|f(x_1) - f(x_2)|
\]

expressing the continuity.

For differentiability, let \(y_i = f(x_i) \) with \(|y_i| < \delta/2 \). We wish to show that the derivative \(\varphi'(y_2) \) of the inverse \(\varphi \) of \(f \) at \(y_1 \) is simply

\[
\varphi'(y_2) = f'(\varphi(y_2))^{-1}
\]

To this end, estimate

\[
|\varphi(y_1) - \varphi(y_2) - f'(y_2)^{-1}(y_1 - y_2)| = |x_1 - x_2 - f'(y_2)^{-1}(f(x_1) - f(x_2))|
\]

By \(|F'(0)| = 0 \),

\[
f'(x_2) = 1_m + T
\]

where \(T \) depends upon \(x_2 \) and \(|T| = o(x_2) \) as \(x_2 \) goes to 0. By hypothesis, \(|T| < \frac{1}{2} \) for all such \(x_2 \), giving a uniform estimate

\[
|f'(x_2)^{-1}| < |1_m - T + T^2 - T^3 + \ldots| \leq \sum_{i \geq 0} 2^{-i} = 2
\]
Then
\[x_1 - x_2 = f'(x_2)(x_1 - x_2) - T(x_1 - x_2) \]
and so
\[|x_1 - x_2 - f'(x_2)^{-1}(f(x_1) - f(x_2))| \leq |f'(x_2)^{-1}(x_1 - x_2) - f'(x_2)^{-1}(f(x_1) + f(x_2))| + |T| \cdot |x_1 - x_2| \]
\[\leq |f'(x_2)^{-1}| \cdot |x_1 - x_2 - f(x_1) + f(x_2)| + |T| \cdot |x_1 - x_2| \]
Since \(f \) is differentiable,
\[|x_1 - x_2 - f(x_1) + f(x_2) = o(x_1 - x_2) \]
And \(|T| = o(x_2) \), so this is
\[|f'(x_2)^{-1}| \cdot |F(x_1) - F(x_2)| + \frac{1}{2}|x_1 - x_2| < \frac{5}{2}|x_1 - x_2| \leq |x_1 - x_2 - f(x_1) + f(x_2)| \]
From the differentiability of \(F \), the latter expression is \(o(x_1 - x_2) \) as \(|x_1 - x_2| \) goes to zero, so is also \(o(y_1 - y_2) \) by continuity of \(\varphi \). Thus, \(\varphi \) is differentiable and its derivative is indeed \(\varphi'(y) = f'(\varphi(y))^{-1} \), for \(|y| < \delta/2 \).
Since inversion (of invertible linear maps) is an infinitely differentiable map, \(f' \) is \(C^{k-1} \), so \(\varphi' \) is also \(C^{k-1} \).

///

3. Implicit function theorem

The implicit function theorem can be made a corollary of the inverse function theorem. Let \(U \subset \mathbb{R}^m \) and \(V \subset \mathbb{R}^n \) be open. Let \(F : U \times V \to \mathbb{R}^n \) be a \(C^k \) mapping. Let \(F_2 \) denote the derivative of \(f \) with respect to its second argument.

[3.1] Theorem: Suppose that \(F_2(x_0, y_0) : \mathbb{R}^n \to \mathbb{R}^n \) is a linear isomorphism. For a sufficiently small neighborhood \(U_0 \subset U \) of \(x_0 \), there is a unique continuous map \(g : U_0 \to V \) so that \(g(x_0) = y_0 \) and \(F(x, g(x)) = 0 \) for all \(x \in U_0 \).

Proof: Without loss of generality, \(F_2(x_0 + 0, y_0) = 1 \). The map \(\varphi : U \times V \to \mathbb{R}^m \oplus \mathbb{R}^n \) defined by \(\varphi(x, y) = (x, F(x, y)) \) has derivative (in \(\mathbb{R}^m \oplus \mathbb{R}^n \)-coordinates)
\[
\begin{pmatrix}
1_m & 0 \\
F_1 & F_2
\end{pmatrix} = \begin{pmatrix}
1_m & 0 \\
F_1 & 1_n
\end{pmatrix}
\]
Thus, \(\varphi \) has an inverse \(\psi \) near \((x_0, y_0)\), with derivative
\[
\begin{pmatrix}
1_m & 0 \\
-F_1(x_0, y_0) & 1_n
\end{pmatrix}
\]
Then \(\psi(x, z) = (x, G(x, z)) \) where \(G \) is some \(C^k \) map. Define \(g(x) = G(x, 0) \). Then \(g \) is \(C^k \) and
\[
(x, F(x, g(x))) = \varphi(x, g(x)) = \varphi(x, G(x, 0)) = \varphi(\psi(x, 0)) = (x, 0)
\]
This proves existence.

For uniqueness: Let \(h \) be a continuous function on a neighborhood of \(x_0 \) so that \(h(x_0) = y_0 \) and \(f(x, h(x)) = 0 \) for all \(x \) near \(x_0 \). By continuity, \(h(x) \) is near \(y_0 \) for such \(x \), so \(\varphi(x, h(x)) = (x, 0) \). Since \(\varphi \) is invertible near \((x_0, y_0)\), there is a unique \((x, y)\) so that \(\varphi(x, y) = (x, 0) \). Then \(g \) and \(h \) must be equal on a neighborhood of \(x_0 \) (possibly smaller than \(U_0 \)).

The closed set of \(0 \leq t \leq 1 \) so that \(g(x_0 + t(x - x_0)) = h(x_0 + t(x - x_0)) \) is thus non-empty. If its least upper bound is \(\tau < 1 \), then by continuity \(g(x_0 + \tau(x - x_0)) = h(x_0 + \tau(x - x_0)) \) implies the same equality for some \(t > \tau \). Thus, \(\tau = 1 \). That is, \(h = g \) on all of \(U_0 \).

///
4. Real-differentiability versus complex-differentiability

Again, for $U \subset \mathbb{R}^2$ non-empty open, for $f : U \to \mathbb{R}^2$, the derivative $Df(x_o)$ at $x_o \in U$, if it exists, is a linear map $Df(x_o) : \mathbb{R}^2 \to \mathbb{R}^2$ such that

$$f(x_o + h) = f(x_o) + Df(x_o)(h) + o(h) \quad \text{as } |h| \to 0, \ h \in \mathbb{R}^2$$

and f is real-differentiable (on U) when $Df(x)$ exists (for all $x \in U$).

[4.1] Claim: Let U be a non-empty open $U \subset \mathbb{C}$. Identifying $\mathbb{C} \approx \mathbb{R}^2$, let $f : U \to \mathbb{C}$ be real-differentiable. Then f is complex-differentiable on U if and only if $Df(z) : \mathbb{C} \to \mathbb{C}$ is complex-linear for every $z \in U$.

Proof: The trivial direction is that f is complex-differentiable. Then Df is just f', with the real-linear maps $Df : \mathbb{C} \to \mathbb{C}$ being by complex multiplication.

In the slightly less trivial direction, suppose that $Df(z)$ is complex-linear for all $z \in U$, namely, $Df(z)(\alpha \cdot h) = \alpha \cdot Df(z)(h)$ for $h, \alpha \in \mathbb{C}$. For any field, the collection of k-linear maps of k to itself is exactly the collection of multiplications by elements of k. Explicitly,

$$Df(z)(h) = Df(z)(h \cdot 1) = h \cdot Df(z)(1) \quad \text{(with complex multiplication)}$$

The value $Df(z)(1)$ is a complex number depending only on z, and fills the role of $f'(z)$, because

$$f(z + h) = f(z) + Df(z)(1) \cdot h + o(h)$$

Thus, f is complex-differentiable. ///

5. Holomorphic inverse function theorem

[5.1] Theorem: For holomorphic f on a neighborhood of z_o, if $f'(z_o) \neq 0$, then there is holomorphic g on a neighborhood of $w_o = (z_o)$ giving a two-sided inverse of f:

$$g(f(z)) = z \quad \text{and} \quad f(g(w)) = w \quad \text{(for } z \text{ near } z_o \text{ and } w \text{ near } w_o)$$

Further, as expected, $g'(w_o) = 1/f'(z_o)$.

Proof: With f considered as a real-differentiable map $f : \mathbb{R}^2 \to \mathbb{R}^2$, obtain a real-differentiable inverse g, and observe that complex differentiability of f implies that of g.

First, we give a straightforward proof using the idea of the previous section, that complex-linearity of the real derivative implies complex differentiability. From $f(g(z)) = z$ with f complex differentiable and g real-differentiable,

$$z + h = f(g(z + h)) = f(g(z) + Dg(z)(h) + o(h)) = f(g(z)) + f'(g(z)) \cdot Dg(z)(h) + o(h)$$

so

$$h = (z + h) - z = f'(g(z)) \cdot Dg(z)(h) + o(h)$$

Replace h by $t \cdot \alpha \cdot h$ with $\alpha \in \mathbb{C}$ and t real:

$$t \cdot \alpha \cdot h = f'(g(z)) \cdot Dg(z)(t \cdot \alpha \cdot h) + o(t \cdot \alpha \cdot h)$$
The real-linearity of $Dg(z)$ lets us divide through by t:

$$\alpha \cdot h = f'(g(z)) \cdot Dg(z)(\alpha \cdot h) + o(t \cdot \alpha \cdot h) \over t$$

Taking the limit as $t \to 0$ gives

$$\alpha \cdot h = f'(g(z)) \cdot Dg(z)(\alpha \cdot h)$$

At z such that $f'(g(z)) \neq 0$, this shows that

$$Dg(z)(\alpha \cdot h) = \alpha \cdot \frac{h}{f'(g(z))} = \alpha \cdot Dg(z)(h)$$

where the latter equality follows from the previous by taking $\alpha = 1$. Thus, $Dg(z)$ is complex-linear, and g is complex-differentiable.

\[\Box\]

6. Holomorphic implicit function theorem

Since we do not have adequate several-complex-variables set-up, we only prove a limited version of an implicit function theorem:

Let $F(z, w)$ be a real-smooth function of two complex variables, holomorphic in each one. Let F_z, F_w be the complex derivatives with respect to the first and second arguments. Assume that these are still real-smooth.

[6.1] Theorem: At z_0, w_0 satisfying $F(z_0, w_0) = 0$ and $F_w(z_0, w_0) \neq 0$, there is a unique holomorphic function $f(z)$ on a neighborhood U of z_0 such that $f(z_0) = w_0$ and $F(z, f(z))$ for $z \in U$.

Proof: The implicit function theorem for smooth functions gives a real-differentiable $g : \mathbb{C} \to \mathbb{C}$ such that $F(z, g(z)) = 0$ for z near z_0, and with $g(z_0) = w_0$. We show that g is complex-differentiable.

The real-differentiability of g gives

$$g(z + h) = g(z) + Dg(z)(h) + o(h) \quad \text{(for small } h \in \mathbb{C})$$

It suffices to show that Dg is complex-linear. Using the assumptions on F,

$$0 = F(z + h, g(z + h)) = F(z + h, g(z) + h) = F(z, g(z)) + F_z(z, g(z)) \cdot h + F_w(z, g(z)) \cdot Dg(z)(h) + o(h)$$

with multiplication and addition in \mathbb{C}. Using $F(z, g(z)) = 0$,

$$0 = F_z(z, g(z)) \cdot h + F_w(z, g(z)) \cdot Dg(h) + o(h)$$

For fixed $\alpha \in \mathbb{C}$, and for h small, replacing h by $\alpha \cdot h$ gives

$$0 = F_z(z, g(z)) \cdot (\alpha \cdot h) + F_w(z, g(z)) \cdot Dg(\alpha \cdot h) + o(\alpha \cdot h)$$

Dividing through by α gives

$$0 = F_z(z, g(z)) \cdot h + F_w(z, g(z)) \cdot \frac{Dg(\alpha \cdot h)}{\alpha} + o(h)$$

Comparing this with the analogous earlier identity,

$$F_w(z, g(z)) \cdot \left(\frac{Dg(\alpha \cdot h)}{\alpha} - Dg(h) \right) = o(h)$$
Replacing \(h \) by \(t \cdot h \) with small real \(t \),

\[
F_w(z, g(z)) \cdot \left(\frac{Dg(\alpha \cdot t \cdot h)}{\alpha} - Dg(t \cdot h) \right) = o(t \cdot h)
\]

Using the \(\mathbb{R} \)-linearity of \(Dg \), and dividing through by \(t \), gives

\[
F_w(z, g(z)) \cdot \left(\frac{Dg(\alpha \cdot h)}{\alpha} - Dg(h) \right) = \frac{o(t \cdot h)}{t}
\]

Letting \(t \to 0 \) gives

\[
\frac{Dg(\alpha \cdot h)}{\alpha} - Dg(h) = 0
\]

This is the \(\mathbb{C} \)-linearity of \(Dg \), which is the \textit{complex}-differentiability of \(g \). //