The paper that gave its name to these results is

The context is that the maximum modulus principle[1] in complex analysis does not apply to unbounded regions. That is, holomorphic functions on an unbounded region may be bounded by 1 on the edges but be violently unbounded in the interior.

The simplest example is \(f(z) = e^{e^z} \). Obviously for \(z \) real and going to \(+\infty\) this function blows up. Indeed,

\[
|e^{e^{x+iy}}| = e^{Re(e^{x+iy})} = e^{e^x \cos y}
\]

Thus, for fixed \(y = \text{Im} \, z \) with \(\cos y > 0 \), the function blows up as \(x = \text{Re} \, z \to +\infty \). On the other hand, for \(\cos y = 0 \) the function is bounded. Thus, on the strip \(-\frac{\pi}{2} \leq y \leq \frac{\pi}{2} \), the function \(e^{e^x} \) is bounded on the edges but blows up as \(x \to +\infty \).

This example suggests growth conditions under which a bound of 1 on the edges implies the same bound throughout the strip.

[1.0.1] Theorem: Let \(f \) be a holomorphic function on the horizontal half-strip

\[
\{z : -\frac{\pi}{2} \leq y \leq \frac{\pi}{2} \text{ and } 0 \leq x \}
\]

If

\[
|f(z)| \ll e^{C \cdot Re z} \quad \text{(for some constant } 0 \leq C < 1)
\]

then \(|f(z)| \leq 1 \) on the edges of the half-strip implies \(|f(z)| \leq 1 \) in the interior, as well.

Proof: Unsurprisingly, the proof is a reduction to the usual maximum modulus principle. Take any fixed \(D \) in the range

\[
C < D < 1
\]

The function

\[
F_\varepsilon(z) = \frac{f(z)}{e^{\varepsilon e^D \cdot z}} \quad \text{(for } \varepsilon > 0\text{)}
\]

is certainly bounded by 1 on the edges of the half-strip, and in the interior goes to 0 uniformly in \(y \) as \(x \to +\infty \), for fixed \(\varepsilon > 0 \). (The uniform decay in the interior is where the modification with \(D \) is used.)

Thus, on a rectangle

\[
RT = \{z : -\frac{\pi}{2} \leq y \leq \frac{\pi}{2}, \text{ and } 0 \leq x \leq T\}
\]

for sufficiently large \(T > 0 \) depending upon \(\varepsilon \), the function \(F_\varepsilon \) is bounded by 1 on the edge. The usual maximum modulus principle implies that \(F_\varepsilon \) is bounded by 1 throughout. That is, for each fixed \(z_0 \) in the half-strip,

\[
|f(z_0)| \leq e^{\varepsilon e^{D \cdot Re z_0}} \quad \text{(for all } \varepsilon > 0\text{)}
\]

We can let \(\varepsilon \to 0^+ \), giving \(|f(z_0)| \leq 1 \).

[1] The maximum modulus principle in complex analysis is that a holomorphic function \(f \) on a bounded region in \(\mathbb{C} \) with \(|f(z)| \leq 1 \) on the edges is bounded by 1 in the interior, as well.
Remark: Analogous theorems on strips of other widths follow by using e^{e^z} with suitable constants c.

An analogous theorem on a full strip, rather than half-strip, follows by using a function like $e^{\cosh z}$ in place of e^{e^z}, as follows.

Theorem: Let f be a holomorphic function on the full horizontal strip
\[\{ z : -\frac{\pi}{2} \leq \text{Im} \ z \leq \frac{\pi}{2} \} \]

If
\[|f(z)| \ll e^{C \text{Re} z} \quad \text{(for some constant } 0 \leq C < 1) \]

then $|f(z)| \leq 1$ on the edges of the strip implies $|f(z)| \leq 1$ in the interior, as well.

Proof: Again, reduce to the maximum modulus principle. Fix D in the range $C < D < 1$. The function
\[F_\varepsilon(z) = \frac{f(z)}{e^{\varepsilon \cosh z}} \quad \text{(for } \varepsilon > 0) \]

is bounded by 1 on the edges of the strip, and in the interior goes to 0 uniformly in y as $x \to \pm \infty$, for fixed $\varepsilon > 0$. Thus, on a rectangle
\[R_T = \{ z : -\frac{\pi}{2} \leq y \leq \frac{\pi}{2}, \text{ and } -T \leq x \leq T \} \quad \text{(for large } T > 0, \text{ depending upon } \varepsilon) \]

the function F_ε is bounded by 1 on the edge. The usual maximum modulus principle implies that F_ε is bounded by 1 throughout. That is, for each fixed z_o in the half-strip,
\[|f(z_o)| \leq e^{\varepsilon \cosh z_o} \quad \text{(for all } \varepsilon > 0) \]

We can let $\varepsilon \to 0^+$, giving $|f(z_o)| \leq 1$. \///

The details of various adjustments can be made to disappear by strengthening the hypotheses:

Corollary: Let f be a holomorphic function on a strip or half-strip, with a bound
\[|f(z)| \ll e^{|z|^A} \quad \text{(for some } A > 0) \]

If $|f(z)| \leq 1$ on the edges of the (half-)strip, then $|f(z)| \leq 1$ in the interior, as well. \///

Remark: Further variations are easily possible, by additional adjustments of functions. For example, polynomial growth of a function f on the edges of a strip or half-strip can be accommodated by considering $f(z)/(z - z_o)^M$ for z_o outside the strip, and large M. \///