1. Prove that a topological vector space is normable (meaning has a topology given by a norm) if and only if it has a countable local basis (at 0) consisting of bounded open sets \(U_i \) (meaning that for any other open \(V \) containing 0, there exists real \(t_0 \) such that for \(t \geq t_0 \) one has \(U_i \subseteq tV \)).

2. Let \(X \) be a non-compact (normal) topological space. Prove that the completion of \(C_c^\infty(X) \) with the sup-norm is \(C_c^\infty(X) \), the space of continuous functions \(f \) going to 0 at infinity (in the sense that, given \(\varepsilon > 0 \) there is a compact \(K \) such that off \(K \) one has \(|f(x)| < \varepsilon \)).

3. Prove that \(C^\infty[0, b] \) is not normable.

4. Prove that \(C^\infty(\mathbb{R}) \) is not normable.

5. Prove that a topological vector space is metrizable (meaning there’s a metric which engenders the given topology) if and only if it has a countable local basis (at 0).

6. Why can’t \(C^\infty(\mathbb{R}) \) be made into a Frechet space?

7. Let \(X \) be a \(\sigma \)-countable topological space (assumed normal, so that there are sufficiently many continuous functions on it). Show that \(C^\infty(X) \) has a Frechet-space structure.

8. If \(X \) is not \(\sigma \)-countable will \(C^\infty(X) \) have a Frechet-space structure?

9. Let \(\delta : C_c^\infty(\mathbb{R}) \to \mathbb{C} \) be the continuous linear function \(\delta(f) = f(0) \)

Prove that there is no continuous linear functional on \(L^2(\mathbb{R}) \) whose restriction to \(C_c^\infty(\mathbb{R}) \) is \(\delta \).

10. Prove that \(C^\infty(\mathbb{R}) \) is a Frechet space, in particular is complete, with the metric

\[
d(f, g) = \sum_{n=0}^\infty 2^{-n} \frac{\sup_{|x| \leq n} |f(x) - g(x)|}{1 + \sup_{|x| \leq n} |f(x) - g(x)|}
\]

11. Show that the usual product topology on a product \(\prod_{\alpha \in A} X_\alpha \) of topological spaces \(X_\alpha \) does have the mapping property that for every collection \(f_\alpha : W \to X_\alpha \) of continuous maps there is a unique map \(f : W \to \prod_{\alpha} X_\alpha \) such that \(f_\alpha = p_\alpha \circ f \), where \(p_\alpha \) is the projection from the product to \(X_\alpha \). (And \(p_\alpha \) is continuous.)

12. Let \(V \) be a topological vector space over \(\mathbb{C} \) and \(W \) a complex vector subspace which is not topologically closed. Show that the quotient \(V/W \) is a topological vector space in which scalar multiplication and vector addition are continuous, but which is not Hausdorff.

13. Let \(X \) be a vector space with a topology such that vector addition and scalar multiplication are continuous. Define an equivalence relation \(\sim \) on \(X \) by \(x \sim y \) if there are open sets \(U \ni x \) and \(V \ni y \) with \(U \cap V = \emptyset \). Define the Hausdorffization \(X^H \) of \(X \) to be the quotient space \(X/\sim \), with quotient map \(q : X \to X^H \).

(a) Prove that \(\sim \) really is an equivalence relation.

(b) Prove that \(X^H \) is Hausdorff, and \(q : X \to X^H \) is continuous. (c) Prove that for a continuous linear map \(f : X \to Y \) with topological vector space (Hausdorff) \(Y \), there is a unique continuous linear \(f^H : X^H \to Y \) such that \(f = f^H \circ q \).

14. (a) Give an example to show that for more general topological spaces without a vector space structure the definition (just above) of Hausdorffization sufficient for vector spaces fails. (b) As a second try: Let \(X \) be a topological space. Say that two points \(x, y \) in \(X \) are inseparable if there are no open sets \(U \ni x \) and \(V \ni y \) with \(U \cap V = \emptyset \). Define an equivalence relation \(\sim \) on \(X \) by \(x \sim y \) if there are points \(x_1, x_2, \ldots, x_n \) such that \(x_1 = x \) and \(x_n = y \), and \(x_i \) and \(x_{i+1} \) are inseparable for all \(i \). Define the Hausdorffization \(X^H \) of \(X \) to be the quotient space \(X/\sim \), with quotient map \(q : X \to X^H \). Give an example to show that this version of \(X^H \) is not necessarily Hausdorff. (c) Try defining the Hausdorffization \(X^H \) of \(X \) by the condition that there is a continuous \(q : X \to X^H \) and, for a continuous map \(f : X \to Y \) with Hausdorff \(Y \), there is a unique continuous \(f^H : X^H \to Y \) such that \(f = f^H \circ q \).