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This is the first introduction to topological vectorspace in generality. This would be motivated and useful
after acquaintance with Hilbert spaces, Banach spaces, Fréchet spaces, to understand important examples
outside these classes of spaces.

Basic concepts are introduced which make sense without a metric. Some concepts appearing to depend a
metric are given sense in a general context.

Even in this generality, finite-dimensional topological vectorspaces have just one possible topology. This has
immediate consequences for maps to and from finite-dimensional topological vectorspaces.

All this works with mild hypotheses on the scalars involved.

1. Natural non-Fréchet spaces

There are many natural spaces of functions that are not Fréchet spaces.

For example, let

Coc (R) = {compactly-supported continuous C-valued functions on R}

This is a strictly smaller space than the space Co(R) of all continuous functions on R, which we saw is
Fréchet. This function space is an ascending union

Coc (R) =

∞⋃
N=1

{f ∈ Coc (R) : sptf ⊂ [−N,N ]}

Each space
CoN = {f ∈ Coc (R) : sptf ⊂ [−N,N ]} ⊂ Co[−N,N ]

is strictly smaller than the space Co[−N,N ] of all continuous functions on the interval [−N,N ], since
functions in CoN must vanish at the endpoints. Still, CoN is a closed subspace of the Banach space Co[−N,N ]
(with sup norm), since a sup-norm limit of functions vanishing at ±N must also vanish there. Thus, each
individual CoN is a Banach space.

For 0 < M < N the space CoM is a closed subspace of CoN (with sup norm), since the property of vanishing
off [−M,M ] is preserved under sup-norm limits.

But for 0 < M < N the space CoM is nowhere dense in CoN , since an open ball of radius ε > 0 around any
function in CoN contains many functions with non-zero values off [−M,M ].

Thus, the set Coc (R) is an ascending union of a countable collection of subspaces, each closed in its successor,
but nowhere-dense there.
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Though the topology on Coc (R) is not specified yet, any acceptable topology on Coc (R) should give subspace
CoM its natural (Banach-space) topology. Then Coc (R) is a countable union of nowhere-dense subsets. By
the Baire category theorem the topology on Coc (R) cannot be complete metric. In particular, it cannot be
Fréchet.

Nevertheless, the space Cpc (R) and many similarly-constructed spaces do have a reasonable structure, being

an ascending union of a countable collection of Fréchet spaces, each closed in the next. [1]

[1.0.1] Remark: The space of integrals against regular Borel measures on a σ-compact [2] topological space

X can be construed (either defined or proven [3] depending on one’s choice) to be all continuous linear maps
Coc (X) → C. This motivates understanding the topology of Coc (X), and, thus, to understand non-Fréchet
spaces.

[1.0.2] Remark: A similar argument proves that the space C∞c (Rn) of test functions (compactly-
supported infinitely differentiable functions) on Rn cannot be Fréchet. These functions play a central role in
the study of distributions or generalized functions, providing further motivation to accommodate non-Fréchet
spaces.

2. Topological vectorspaces

For the moment, the scalars need not be real or complex, need not be locally compact, and need not
be commutative. Let k be a division ring. Any k-module V is a free k-module. [4] We will substitute
k-vectorspace for k-module in what follows.

Let the scalars k have a norm | |, a non-negative real-valued function on k such that
|x| = 0 =⇒ x = 0

|xy| = |x||y|

|x+ y| ≤ |x|+ |y|

 (for all x, y ∈ k)

Further, suppose that with regard to the metric

d(x, y) = |x− y|

the topological space k is complete and non-discrete. The non-discreteness is that, for every ε > 0 there is
x ∈ k such that

0 < |x| < ε

A topological vector space V (over k) is a k-vectorspace V with a topology on V in which points are
closed, and so that scalar multiplication

x× v −→ xv (for x ∈ k and v ∈ V )

[1] A countable ascending union of Fréchet spaces, each closed in the next, suitably topologized, is an LF-space.

This stands for limit of Fréchet. The topology on the union is a colimit, discussed a bit later.

[2] As usual, σ-compact means that the space is a countable union of compacts.

[3] This is the Riesz-Markov-Kakutani theorem.

[4] The proof of this free-ness is the same as the proof that a vector space over a (commutative) field is free, that is,

has a basis. The argument is often called the Lagrange replacement principle, and succeeds for infinite-dimensional

vector spaces, granting the Axiom of Choice.
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and vector addition
v × w → v + w (for v, w ∈ V )

are continuous.

For subsets X,Y of V , let
X + Y = {x+ y : x ∈ X, y ∈ Y }

Also, write
−X = {−x : x ∈ X}

The following idea is elementary, but indispensable. Given an open neighborhood U of 0 in a topological
vectorspace V , continuity of vector addition yields an open neighborhood U ′ of 0 such that

U ′ + U ′ ⊂ U

Since 0 ∈ U ′, necessarily U ′ ⊂ U . This can be repeated to give, for any positive integer n, an open
neighborhood Un of 0 such that

Un + . . .+ Un ⊂ U︸ ︷︷ ︸
n

In a similar vein, for fixed v ∈ V the map V → V by x → x + v is a homeomorphism, being invertible by
the obvious x→ x− v. Thus, the open neighborhoods of v are of the form v + U for open neighborhoods U
of 0. In particular, a local basis at 0 gives the topology on a topological vectorspace.

[2.0.1] Lemma: Given a compact subset K of a topological vectorspace V and a closed subset C of V not
meeting K, there is an open neighborhood U of 0 in V such that

closure(K + U) ∩ (C + U) = ∅

Proof: Since C is closed, for x ∈ K there is a neighborhood Ux of 0 such that the neighborhood x+ Ux of
x does not meet C. By continuity of vector addition

V × V × V → V by v1 × v2 × v3 → v1 + v2 + v3

there is a smaller open neighborhood Nx of 0 so that

Nx +Nx +Nx ⊂ Ux

By replacing Nx by Nx ∩ −Nx, which is still an open neighborhood of 0, suppose that Nx is symmetric in
the sense that Nx = −Nx.

Using this symmetry,
(x+Nx +Nx) ∩ (C +Nx) = ∅

Since K is compact, there are finitely-many x1, . . . , xn such that

K ⊂ (x1 +Nx1
) ∪ . . . ∪ (xn +Nxn

)

Let
U =

⋂
i

Nxi

Since the intersection is finite, this is open. Then

K + U ⊂
⋃

i=1,...,n

(xi +Nxi + U) ⊂
⋃

i=1,...,n

(xi +Nxi +Nxi)
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These sets do not meet C + U , by construction, since U ⊂ Nxi for all i.

Finally, since C + U is a union of opens y + U for y ∈ C, it is open, so even the closure of K + U does not
meet C + U . ///

[2.0.2] Corollary: A topological vectorspace is Hausdorff. (Take K = {x} and C = {y} in the lemma).
///

[2.0.3] Corollary: The topological closure Ē of a subset E of a topological vectorspace V is obtained as

Ē =
⋂
U

E + U

where U ranges over a local basis at 0.

Proof: In the lemma, take K = {x} and C = Ē for a point x of V not in C. Then we obtain an open
neighborhood U of 0 so that x+U does not meet Ē+U . The latter contains E+U , so certainly x 6∈ E+U .
That is, for x not in the closure, there is an open U containing 0 so that x 6∈ E + U . ///

[2.0.4] Remark: It is convenient that Hausdorff-ness of topological vectorspaces follows from the weaker
assumption that points are closed.

3. Quotients and linear maps

We continue to suppose that the scalars k are a non-discrete complete normed division ring. It suffices to
think of R or C.

For two topological vectorspaces V,W over k, a function

f : V →W

is (k-)linear when
f(αx+ βy) = αf(x) + βf(y)

for all α, β ∈ k and x, y ∈ V . Almost without exception we will be interested exclusively in continuous
linear maps, meaning linear maps continuous for the topologies on V,W . The kernel ker f of a linear map
is

ker f = {v ∈ V : f(v) = 0}
Being the inverse image of a closed set by a continuous map, it is closed. It is easy to check that it is a
k-subspace of V .

For a closed k-subspace H of a topological vectorspace V , we can form the quotient V/H as topological
vectorspace, with k-linear quotient map q : V → V/H given as usual by

q : v −→ v +H

The quotient topology on E is the finest topology on E such that the quotient map q : V → E is
continuous, namely, a subset E of V/H is open if and only if q−1(E) is open. It is easy to check that this is
a topology.

[3.0.1] Remark: For non-closed subspaces H, the quotient topology on V/H is not Hausdorff. [5] Non-
Hausdorff spaces are not topological vector spaces in our sense. For our purposes, we do not want non-
Hausdorff spaces.

[5] That the quotient V/H by a not-closed subspace H is not Hausdorff is easy to see, using the definition of the

quotient topology, as follows. Let v be in the closure of H but not in H. Then every neighborhood U of v meets

H. Every neighborhood of v +H in the quotient is of the form v +H + U for some neighborhood U of v in V , and

includes 0. That is, even though the image of v in the quotient is not 0, every neighborhood of that image includes 0.
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Further, unlike general topological quotient maps,

[3.0.2] Proposition: For a closed subspace H of a topological vector space V , the quotient map
q : V → V/H is open, that is, carries open sets to open sets.

Proof: Let U be open in V . Then

q−1(q(U)) = q−1(U +H) = U +H =
⋃
h∈H

h+ U

This is a union of opens, so is open. ///

[3.0.3] Corollary: For a closed k-subspace W of a topological vectorspace V , the quotient V/W is a
topological vectorspace. In particular, in the quotient topology points are closed.

Proof: The algebraic quotient exists without any topological hypotheses on W . Since W is closed, and since
vector addition is a homeomorphism, v + W is closed as well. Thus, its complement V − (v + W ) is open,
so q(V − (v +W )) is open, by definition of the quotient topology. Thus, the complement

q(v) = v +W = q(v +W ) = V/W − q(V − (v +W ))

of the open set q(V − (v +W )) is closed. ///

[3.0.4] Corollary: Let f : V → X be a linear map with a closed subspace W of V contained in ker f . Let
f̄ be the induced map f̄ : V/W → X defined by f̄(v +W ) = f(v). Then f is continuous if and only if f̄ is
continuous.

Proof: Certainly if f̄ is continuous then f = f̄ ◦ q is continuous. The converse follows from the fact that q
is open. ///

That is, a continuous linear map f : V → X factors through any quotient V/W where W is a closed subspace
contained in the kernel of f .

4. More topological features

Now we can consider the notions of balanced subset, absorbing subset and also directed set, Cauchy
net, and completeness. We continue to suppose that the scalars k are a non-discrete complete normed
division ring.

A subset E of V is balanced if for every x ∈ k with |x| ≤ 1 we have xE ⊂ E.

Lemma: Let U be a neighborhood of 0 in a topological vectorspace V over k. Then U contains a balanced
neighborhood N of 0.

Proof: By continuity of scalar multiplication, there is ε > 0 and a neighborhood U ′ of 0 ∈ V so that if
|x| < ε and v ∈ U ′ then xv ∈ U . Since k is non-discrete, there is xo ∈ k with 0 < |xo| < ε. Since scalar
multiplication by a non-zero element is a homeomorphism, xoU

′ is a neighborhood of 0 and xoU
′ ⊂ U . Put

N =
⋃
|y|≤1

yxoU
′

Then, for |x| ≤ 1, we have |xy| ≤ |y| ≤ 1, so

xN =
⋃
|y|≤1

x(yxoU
′) ⊂

⋃
|y|≤1

yxoU
′ = N
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This N is as desired. ///

A subset E of a (not necessarily topological) vectorspace V over k is absorbing if for every v ∈ V there is
to ∈ R so that v ∈ αE for every α ∈ k so that |α| ≥ to.

Lemma: Every neighborhood U of 0 in a topological vectorspace is absorbing.

Proof: We may as well shrink U so as to assure that U is balanced. By continuity of the map k → V
given by α → αv, there is ε > 0 so that |α| < ε implies that αv ∈ U . By the non-discreteness of k, there is
non-zero α ∈ k satisfying any such inequality. Then v ∈ α−1U , as desired. ///

Let S be a poset, that is, a set with a partial ordering ≥. We assume further that, given two elements
s, t ∈ S, there is z ∈ S so that z ≥ s and z ≥ t. Then S is a directed set.

A net in V is a subset {xs : s ∈ S} of V indexed by a directed set S. A net {xs : s ∈ S} in a topological
vectorspace V is a Cauchy net if, for every neighborhood U of 0 in V , there is an index so so that for
s, t ≥ so we have xs − xt ∈ U . A net {xs : s ∈ S} is convergent if there is x ∈ V so that, for every
neighborhood U of 0 in V there is an index so so that for s ≥ so we have x−xs ∈ U . Since points are closed,
there can be at most one point to which a net converges. Thus, a convergent net is Cauchy. A topological
vectorspace is complete if (also) every Cauchy net is convergent.

Lemma: Let Y be a vector subspace of a topological vector space X, and suppose that Y is complete when
given the subspace topology from X. Then Y is a closed subset of X.

Proof: Let x ∈ X be in the closure of Y . Let S be a local basis of opens at 0, where we take the partial
ordering so that U ≥ U ′ if and only if U ⊂ U ′. For each U ∈ S choose

yU ∈ (x+ U) ∩ Y

Then the net {yU : U ∈ S} converges to x, so is Cauchy. But then it must converge to a point in Y , so by
uniqueness of limits of nets it must be that x ∈ Y . Thus, Y is closed. ///

[4.0.1] Remark: Unfortunately, completeness as above is too strong a condition for general topological

vectorspaces, beyond Fréchet spaces. [6]

5. Finite-dimensional spaces

Now we look at the especially simple nature of finite-dimensional topological vectorspaces, and their
interactions with other topological vectorspaces. [7] The point is that there is only one topology on a
finite-dimensional space. This has important consequences.

[5.0.1] Proposition: For a one-dimensional topological vectorspace V , that is, a free module on one
generator e, the map k → V by x→ xe is a homeomorphism.

Proof: Since scalar multiplication is continuous, we need only show that the map is open. Given ε > 0, by
the non-discreteness of k there is xo in k so that 0 < |xo| < ε. Since V is Hausdorff, there is a neighborhood
U of 0 so that xoe 6∈ U . Shrink U so it is balanced. Take x ∈ k so that xe ∈ U . If |x| ≥ |xo| then |xox−1| ≤ 1,
so that

xoe = (xox
−1)(xe) ∈ U

[6] A slightly weaker version of completeness, quasi-completeness or local completeness, does hold for most important

natural spaces, and will be discussed later.

[7] We still only need suppose that the scalar field k is a complete non-discrete normed division ring.
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by the balanced-ness of U , contradiction. Thus,

xe ∈ U =⇒ |x| < |xo| < ε

This proves the claim. ///

[5.0.2] Corollary: Fix xo ∈ k. A not-identically-zero k-linear k-valued function f on V is continuous if and
only if the affine hyperplane

H = {v ∈ V : f(v) = xo}

is closed in V .

Proof: Certainly if f is continuous then H is closed. For the converse, we need only consider the case
xo = 0, since translations (i.e., vector additions) are homeomorphisms of V to itself.

For vo with f(vo) 6= 0 and for any other v ∈ V

f(v − f(v)f(vo)
−1vo) = f(v)− f(v)f(vo)

−1f(vo) = 0

Thus, V/H is one-dimensional. Let f̄ : V/H → k be the induced k-linear map on V/H so that f = f̄ ◦ q:

f̄(v +H) = f(v)

Then f̄ is a homeomorphism to k, by the previous result, so f is continuous. ///

In the following theorem, the three assertions are proven together by induction on dimension.

[5.0.3] Theorem:
• A finite-dimensional k-vectorspace V has just one topological vectorspace topology.
• A finite-dimensional k-subspace V of a topological k-vectorspace W is necessarily a closed subspace of W .
• A k-linear map φ : X → V to a finite-dimensional space V is continuous if and only if the kernel is closed.

Proof: To prove the uniqueness of the topology, it suffices to prove that for any k-basis e1, . . . , en for V ,
the map

k × . . .× k → V

given by
(x1, . . . , xn)→ x1e1 + . . .+ xnen

is a homeomorphism. Prove this by induction on the dimension n, that is, on the number of generators for
V as a free k-module.

The case n = 1 was treated already. Granting this, we need only further note that, since k is complete, the
lemma above asserting the closed-ness of complete subspaces shows that any one-dimensional subspace is
necessarily closed.

Take n > 1. Let
H = ke1 + . . .+ ken−1

By induction, H is closed in V , so the quotient V/H is a topological vector space. Let q be the quotient
map. The space V/H is a one-dimensional topological vectorspace over k, with basis q(en). By induction,
the map

φ : xq(en) = q(xen)→ x

is a homeomorphism to k.

Likewise, ken is a closed subspace and we have the quotient map

q′ : V → V/ken
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We have a basis q′(e1), . . . , q′(en−1) for the image, and by induction the map

φ′ : x1q
′(e1) + . . .+ xn−1q

′(en−1)→ (x1, . . . , xn−1)

is a homeomorphism.

Invoking the induction hypothesis, the map

v → (φ ◦ q)(v)× (φ′ ◦ q′)(v)

is continuous to
kn−1 × k ≈ kn

On the other hand, by the continuity of scalar multiplication and vector addition, the map

kn → V by x1 × . . .× xn → x1e1 + . . .+ xnen

is continuous. These two maps are mutual inverses, proving that we have a homeomorphism.

Thus, a n-dimensional subspace is homeomorphic to kn, so is complete, since (as follows readily) a finite
product of complete spaces is complete. Thus, by the lemma asserting the closed-ness of complete subspaces,
it is closed.

Continuity of a linear map f : X → kn implies that the kernel N = ker f is closed. On the other hand,
if N is closed, then X/N is a topological vectorspace of dimension at most n. Therefore, the induced map
f̄ : X/N → V is unavoidably continuous. But then f = f̄ ◦ q is continuous, where q is the quotient map.
This completes the induction step. ///

6. Convexity, seminorms, Minkowski functionals

Now suppose that the scalar field k contains R. Then the notion of convexity makes sense: a subset E of
a vectorspace is convex when tx+ (1− t)y lies in E for all 0 ≤ t ≤ 1 and for all x, y ∈ E.

The Minkowski functional µE on a vectorspace V attached to a set E in V is

µE(v) = inf{t > 0 : v ∈ α · E for all \alf ∈ k with |α| ≥ t, } (for v ∈ V )

For E not absorbing, there might be v with no such t, necessitating that we put

µE(v) = +∞

Thus, E need not be absorbing to define these functionals, if infinite values are tolerated. [8]

[6.0.1] Proposition: For E convex and balanced in V ,

µE(x+ y) ≤ µE(x) + µE(y) (for x, y ∈ V )

µE(tx) = t · µE(x) (for t ≥ 0)

and
µE(αv) = |α| · µE(v) (for all α ∈ k)

[8] The value +∞ cannot be treated as a number. As usual, t +∞ = ∞ for all real numbers t, but ∞−∞ has no

sensible value, and the sense of 0 · ∞ depends on circumstances.
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Proof: As E is balanced,

µE(αv) = inf{t > 0 : αv ∈ β · E for all β ∈ k with |β| ≥ t, }

= inf{t > 0 : v ∈ β · E for all β ∈ k with |α · β| ≥ t, }

Suppose x ∈ sE for all |s| ≥ so and y ∈ tE for all |t| ≥ to. Then

|x
s
|+ |y

t
| ≤ 1

x+ y ∈ sE + tE

for all |s| ≥ so and for all |t| ≥ to.

7. Countably normed, countably Hilbert spaces

In practice, most Fréchet spaces have more structure than just the Fréchet structure: they are projective limits
of Hilbert spaces, and even that in a rather special way. This type of additional information is exactly what
is needed for several types of stronger results, concerning spectral theory, regularity results for differential
operators, Schwartz-type kernel theorems, and so on.

The ideas here, although of considerable utility, are not made explicit as often as they merit. The present
account is inspired by, and is partly an adaptation of, parts of the Gelfand-Shilov-Vilenkin-Graev monographs
Generalized Functions. This material is meant to be a utilitarian substitute (following Gelfand et alia) for
Grothendieck’s somewhat more general concepts related to nuclear spaces.

Let V be a real or complex vectorspace with a collection of norms | |i for i ∈ Z. We suppose that we have

. . . ≥ |v|−2 ≥ |v|−1 ≥ |v|0 ≥ |v|1 ≥ |v|2 ≥ . . .

for all v ∈ V . Let Vi be the Banach space obtained by taking the completion of V with respect to the ith

norm | |i. The inequalities relating the various norms assure that for i ≤ j the identity map of V to itself
induces (extending by continuity) continuous inclusions

φij : Vi → Vj

Then it makes sense to take the intersection of all the spaces Vi: this is more properly described as an
example of a projective limit of Banach spaces⋂

i

Vi = proj lim
i
Vi

It is clear that V is contained in this intersection (certainly in the sense that there is a natural injection,
and so on). If the intersection is exactly V then V is a countably normed space or countably Banach
space.

This situation can also arise when we have positive-definite hermitian inner products 〈, 〉i with i ∈ Z. Let
| |i be the norm associated to 〈, 〉i. Again suppose that

|v|i ≥ |v|i+1

for all v ∈ V and for all indices i. If the intersection⋂
i

Vi = proj lim
i
Vi ⊃ V
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is exactly V then we say that V is a countably Hilbert space.

[7.0.1] Remark: The notion of countably Hilbert space is worthwhile only for real or complex scalars, while
the countably Banach concept has significant content over more general scalar fields.

[7.0.2] Remark: We can certainly take projective limits over more complicated indexing sets. And we can
take | |i = | |i+1 for i ≥ 0 if we want to focus our attention only on the ‘negatively indexed’ norms or inner
products.

8. Local countability

For any algebraic subspace Y of the dual space V ∗ of continuous linear functionals on V , if Y separates
points on V we can form the Y -(weak-)topology on V by taking seminorms

νλ(v) := |λ(v)|

for λ ∈ Y .

The assumption that Y separates points is necessary to assure that the topology attached to this collection
of semi-norms is such that points are closed. For example, if V is locally convex and Y is all of V ∗, then this
separation property is assured by the Hahn-Banach theorem.

If Y separates points on V and if V is not a countable union of finite-dimensional subspaces, then the
Y -topology on V cannot have a countable local basis.

For example, if V is an infinite-dimensional Frechet space, then (from Baire’s theorem) its dual is not locally
countable.

Proof: Given y ∈ Y and ε > 0, suppose that there are y1, . . . , yn ∈ V and ε1, . . . , εn > 0 so that for v ∈ V
we have

|yi(v)| < εi ∀i → |y(v)| < ε

If so, then certainly yi(v) = 0 for all i would imply that |y(v)| < ε. Let H denote the closed subspace of
v ∈ V where yi(v) = 0 for all i. Then |y(v)| < ε on H implies that y(v) = 0 on H.

We claim that then y is a linear combination of the yi. Without loss of generality we may suppose that
the yi are linearly independent. Consider the quotient map q : V→V/H. From elementary linear algebra,
without any topological consideration, that the quotient V/H is n-dimensional, and has dual space spanned
by the functionals

ȳi(v +H) = yi(v)

The functional y(v) induces a continuous functional

ȳ : V/H → C

since y vanishes on H. Thus, ȳ is a linear combination of the ȳi.

The fact that ȳ is a linear combination of the ȳi implies that v is the corresponding linear combination of
the vi.

This shows that, if it were the case that V had a countable basis in the Y -topology, then there would be
countably-many yi so that every vector in Y would be a finite linear combination of the yi. ///
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