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The first point here is that convex sets can be separated by linear functionals. Second, continuous linear
functionals on subspaces of a locally convex topological vectorspace have continuous extensions to the whole
space.

Proofs are for real vectorspaces. The complex versions are corollaries.

A crucial corollary is that on locally convex topological vectorspaces continuous linear functionals separate
points, meaning that for x 6= y there is a continuous linear functional λ so that λ(x) 6= λ(y). This separation
property is essential in applications. Thus, the hypothesis of local convexity is likewise essential.

1. Continuous Linear Functionals

Let k be R or C with usual absolute value, and V a k-vectorspace, without assumptions about topology on
V for the moment. A k-linear k-valued function on V is a linear functional.

When V has a topology it makes sense to speak of continuity of functionals. The space of all continuous
linear functionals on V is denoted V ∗, suppressing reference to k.

A linear functional λ on V is bounded if there is a neighborhood U of 0 in V and constant c such that |λx| ≤ c
for x ∈ U . The following proposition is the general analogue of the assertion for Banach spaces, in which
the boundedness has a different sense.

[1.0.1] Proposition: The following three conditions on a linear functional λ on a topological vectorspace
V over k are equivalent:
• λ is continuous.
• λ is continuous at 0.
• λ is bounded.

Proof: The first implies the second. Assume the second. Given ε > 0, there is a neighborhood U of 0
such that |λ| is bounded by ε on U . This proves boundedness in the topological vector space sense. Finally,
suppose that |λx| ≤ c on a neighborhood U of 0. Then, given x ∈ V and given ε > 0, take

y ∈ x + ε · U

With x− y = ε · u with u ∈ U ,
|λx− λy| = ε|λu| ≤ ε · c

Rewriting the argument replacing ε by a suitable multiple gives the desired result. ///

2. Dominated Extension

In this section, vectorspaces are real.
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The result involves elementary algebra and inequalities (apart from an invocation of transfinite induction)
and is the heart of the matter. There is no direct discussion of topological vectorspaces. The goal is to
extend a linear function while maintaining a comparison to another function (denoted p below). Thus, for
this section we need not suppose the vectorspaces involved are topological vectorspaces.

Use of the term extension is standard, that a function f̃ on a superset X̃ of a set X is an extension of f if f̃
restricted to the smaller set X is f .

Let V be a real vectorspace, without any assumption about topology. Let

p : V → R

be a non-negative real-valued function on V such that p(tv) = t · p(v) (for t ≥ 0) (positive-homogeneity)

p(v + w) ≤ p(v) + p(w) (triangle inequality)

Thus, p is not quite a semi-norm, lacking a description of p(tv) for t < 0.

[2.0.1] Theorem: A real-linear function λ on a real vector subspace W of V such that

λw ≤ p(w) (for all w ∈ W )

has an extension to a real-linear function λ̃ on all of V , such that

−p(−v) ≤ λv ≤ p(v) (for all v ∈ V )

Proof: The crucial step is to extend the functional by a single step. That is, let v ∈ V . Attempt to define
an extension λ̃ of λ to W +Rv by

λ̃(w + tv) = λw + ct

and see what conditions c must satisfy.

For all w,w′ ∈ W
λw − p(w − v) = λ(w + w′)− λw′ − p(w − v)

≤ p(w + w′)− λ(w′)− p(w − v) = p(w − v + w′ + v)− λ(w′)− p(w − v)

≤ p(w − v) + p(w′ + v)− λw′ − p(w − v) = p(w′ + v)− λw′

That is,
λw − p(w − v) ≤ p(w′ + v)− λw′ (for all w,w′ ∈ W )

Let σ be the sup of all the left-hand sides as w ranges over W . Since the right-hand side is finite, this sup
is finite. Let µ be the inf of the right-hand side as w′ ranges over W . We have

λw − p(w − v) ≤ σ ≤ µ ≤ p(w′ + v)− λw′

Take any real number c such that
σ ≤ c ≤ µ

and define
λ̃(w + tv) = λw + tc

To compare to p is easy: in the inequality

λw − p(w − v) ≤ σ
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replace w by w/t with t > 0, multiply by t, and invoke positive-homogeneity to obtain

λw − p(w − tv) ≤ tσ

from which
λ̃(w − tv) = λw − tc ≤ λw − tσ ≤ p(w − tv)

Likewise, from
µ ≤ p(w + v)− λw

similarly
λ̃(w + tv) = λw + tc ≤ λw + tµ ≤ p(w + tv) (for t > 0)

which gives the other half of the desired inequality.

Thus,
λ̃v ≤ p(v) (for all v ∈ W +Rv)

Using the linearity of λ̃,
λ̃(v) = −λ̃(−v) ≥ −p(−v)

which gives the bottom half of the comparison of λ̃ and p.

To extend to a functional on the whole space dominated by p is a typical exercise in transfinite induction,
executed as follows. Let E be the collection of all extensions λ̃X of λ to a subspace X of V , with λ̃X

dominated by p. Order these extensions by (X1, λ̃1) ≤ (X2, λ̃2) if X1 ⊂ X2 and λ̃2|X = λ̃2. By Hausdorff
Maximality, there is a maximal totally ordered subset Eo of E. Let

V ′ =
⋃

(X,eλX)∈Eo

X

be the ascending union of all the subspaces in Eo. Define a linear functional λ̃ on this union: for v ∈ V ′,
take X such that (X, λ̃X) ∈ Eo and v ∈ X and define

λ̃v = \lamtilXv

Varying the choice of (X, λ̃X) does not affect the definition of λ̃, because Eo is totally ordered.

It remains to check that V ′ is the whole space V . As usual, if not, then the first part of the proof would
create an extension to a properly larger subspace, contradicting the maximality. ///

3. Separation

All vectorspaces are real. Let V be a locally convex topological vectorspace, meaning that there is a local
basis at 0 ∈ V of convex sets.

[3.0.1] Theorem: A non-empty convex open subset X of a locally convex topological vectorspace V can
be separated from a non-empty convex set Y in V if X ∩ Y = φ, in the sense that there is a continuous
real-linear real-valued functional λ on V and a constant c such that

λx < c ≤ λy (for all x ∈ X and y ∈ Y )

Proof: Fix xo ∈ X and yo ∈ Y . Since X is open, X − xo is open, and so is

U = (X − xo)− (Y − yo) = {(x− xo)− (y − yo) : x ∈ X, y ∈ Y }

3



Paul Garrett: Hahn-Banach theorems (July 17, 2008)

Since xo ∈ X and yo ∈ Y , U contains 0. Since X, Y are convex, U is convex.

The Minkowski functional p = pU attached to U is defined to be

p(v) = inf{t > 0 : v ∈ tU}

The convexity assures that p has the positive-homogeneity and triangle-inequality properties of the auxiliary
functional p in the dominated extension theorem.

Let zo = −xo + yo. Since X ∩ Y = φ, zo 6∈ U , so p(zo) ≥ 1. Define a linear functional λ on Rzo by

λ(tzo) = t

Check that λ is dominated by p in the sense of the dominated extension theorem:

λ(tzo) = t ≤ t · p(zo) = p(tzo) (for t ≥ 0)

while
λ(tzo) = t < 0 ≤ p(tzo) (for t < 0)

Thus, indeed,
λ(tzo) ≤ p(tzo) (for all real t)

Thus, λ extends to a real-linear real-valued functional λ on V , still such that

−p(−v) ≤ λv ≤ p(v) (for all v ∈ V )

From the definition of p, |λ| ≤ 1 on U . Thus, on ε
2U we have |λ| < ε. That is, the linear functional λ is

bounded, so is continuous at 0, so is continuous on V .

For arbitrary x ∈ X and y ∈ Y ,

λx− λy + 1 = λ(x− y + zo) ≤ p(x− y + zo) < 1

since x− y + zo ∈ U . Thus, for all such x, y,

λx− λy < 0

Therefore, λ(X) and λ(Y ) are disjoint convex subsets of R. Since λ is not the zero functional, it is surjective,
and so is an open map. Thus, λ(X) is open, and

λ(X) < sup λ(X) ≤ λ(Y )

as desired. ///

4. Complex scalars

The dominated extension and separation theorems, stated and proven there for real vectorspaces, have
analogues in the complex case, just corollaries of the the real-scalar results.

Let V be a complex vectorspace. Given a complex-linear complex-valued functional λ on V , let its real part
be

Re λ(v) =
λv + λv

2
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where the overbar denotes complex conjugation. On the other hand, given a real-linear real-valued functional
u on V , its complexification is

Cx u(x) = u(x)− iu(ix) (where i =
√
−1)

[4.0.1] Proposition: The complexification Cx u of a real-linear functional u on the complex vectorspace
V is a complex-linear functional such that

Re Cx u = u

For a complex-linear functional λ

Cx Re λ = λ

Straightforward. ///

[4.0.2] Theorem: Let p be a seminorm on the complex vectorspace V and λ be a complex-linear function
on a complex vector subspace W of V , such that

|λw| ≤ p(w) (for all w ∈ W )

Then there is an extension of λ to a complex-linear function λ̃ on V , such that

|λ̃v| ≤ p(v) (for all v ∈ V )

Proof: Certainly if |λ| ≤ p then |Re λ| ≤ p. Then by the theorem for real-linear functionals, there is an
extension u of Re λ to a real-linear functional u such that still |u| ≤ p. Let

λ̃ = Cx u

All that remains to show, in light of the proposition above, is that |λ̃| ≤ p.

To this end, for given v ∈ V , let µ be a complex number of absolute value 1 such that

|λ̃v| = µλ̃v

Then
|λ̃v| = µλ̃v = λ̃(µv) = Re λ̃(µv) ≤ p(µv) = p(v)

using the seminorm property of p. Thus, the complex-linear functional λ̃ made by complexifying the real-
linear extension of the real part of λ satisfies the desired bound. ///

[4.0.3] Theorem: Let X be a non-empty convex open subset of a locally convex topological vectorspace
V not meeting a non-empty convex set Y in V . Then there is a continuous complex-linear complex-valued
functional λ on V and a constant c such that

Re λx < c ≤ Re λy (for all x ∈ X and y ∈ Y )

Proof: Invoke the real-linear version of the theorem to make a real-linear functional u such that

ux < c ≤ uy (for all x ∈ X and y ∈ Y )

By the proposition, u is the real part of its own complexification λ = Cxu. ///
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5. Corollaries

The corollaries hold for both real or complex scalars.

[5.0.1] Corollary: Let V be a locally convex topological vectorspace with K compact convex non-empty
subset and C is a closed convex subset with K ∩ C = mtset. Then there is a continuous linear functional λ
on V and real constants c1 < c2 such that

Re λx ≤ c1 < c2 ≤ Re λy (for all x ∈ K and y ∈ C)

Proof: Let U be a small-enough convex neighborhood of 0 in V such that

(K + U) ∩ C = φ

Apply the separation theorem to X = K + U and Y = C. The constant c2 can be taken to be
c2 = sup Re λ(K + U). Since Re λ(K) is a compact subset of Re λ(K + U), its sup c1 is strictly less
than c2. ///

[5.0.2] Corollary: Let V be a locally convex topological vectorspace, W a subspace, and v ∈ V . Let W
denote the topological closure of W . Then v 6∈ W if and only if there is a continuous linear functional λ on
V such that λ(W ) = 0 while λ(v) = 1.

Proof: On one hand, if v lies in the closure of W , then any continuous function which is 0 on W must be 0
on v, as well.

On the other hand, suppose that v does not lie in the closure of W . Then apply the previous corollary with
K = {v} and C = W . We find that

Re λ({v}) ∩ Re λ(W ) = φ

Since Re λ(W ) is a proper vector subspace of the real line, it must be {0}. Then Re λv 6= 0. Divide λ by the
constant Re λ(v) to obtain a continuous linear functional zero on W but 1 on v. ///

[5.0.3] Corollary: Let V be a locally convex topological real vectorspace. Let λ be a continuous linear
functional on a subspace W of V . Then there is a continuous linear functional λ on V extending λ.

Proof: Without loss of generality, take λ 6= 0. Let Wo be the kernel of λ (on W ), and pick w1 ∈ W such that
λw1 = 1. Evidently w1 is not in the closure of Wo, so there is λ on the whole space V such that λ|Wo = 0
and λw1 = 1. It is easy to check that this λ is an extension of λ. ///

[5.0.4] Corollary: Let V be a locally convex topological vectorspace. Given two distinct vectors x 6= y
in V , there is a continuous linear functional λ on V such that

λx 6= λy

Proof: The set {x} is compact convex non-empty, and the set {y} is closed convex non-empty. Apply a
corollary above. ///
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