Catalogue of Useful Topological Vectorspaces

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/

We take for granted that Hilbert spaces and Banach spaces are understood. **Frechet spaces** are projective limits of countable collections of Banach spaces. Thus, they are (complete) metrizable, and are *locally convex*.

We use standard multi-index notation: for $i = (i_1, ..., i_n) \in \mathbb{Z}^n$, write

$$|i| = \sum_{j} i_{j}$$

For $|i| \leq k$ and for a k-times continuously differentiable function f on \mathbb{R}^n , write

$$f^{(i)} = \frac{\partial^{|i|} f}{\partial x_1 \dots \partial x_n}$$

A function f is rapidly decreasing if $f(x)|x|^t$ goes to zero as $|x| \to +\infty$, for all $t \ge 0$).

The space C_K^k of k-times continuously differentiable functions on \mathbf{R}^n with support in K is a Banach space when given the norm

$$|f| = \sum_{|i| \le k} \sup_{x \in K} |f^{(i)}(x)|$$

(Note that this space of functions is quite a bit smaller than the space $C^k(K)$ of k-times differentiable functions on K, since the definition of C_K^k requires that functions and their derivatives go to zero at the boundary of K, and so on).

The space $\mathcal{D}_K = C_K^{\infty}$ of smooth functions on \mathbf{R}^n with support in compact K is a *Frechet* space, being the projective limit (intersection) of the Banach spaces C_K^k .

The space \mathcal{D} of **test functions** on \mathbf{R}^n is the collection of all compactly-supported smooth (i.e., infinitely-differentiable) functions on \mathbf{R}^n . It is the *direct limit* (ascending union) of the Frechet spaces \mathcal{D}_K of smooth functions with support in a given compact set K. It is locally convex, but *not* metrizable: it is a countable union of nowhere-dense subsets, namely the \mathcal{D}_K as K ranges over a countable collection of compacta whose union is all of \mathbf{R}^n .

The **Schwartz space** S on \mathbb{R}^n is the collection of smooth functions all whose partial derivatives are rapidly decreasing.

This is a Frechet space (countable projective limit of Banach spaces). Specifically, we have the *countable* collection of seminorms

$$\nu_{k,\ell}(f) = \sup_{x \in \mathbf{R}^n, |i| \le \ell} (1 + |x|)^k |f^{(i)}(x)|$$

for non-negative integers k, ℓ .

Paul Garrett: Catalogue of Useful Topological Vectorspaces (March 1, 2011)

The space \mathcal{E} of all smooth functions on \mathbf{R}^n is a Frechet space (countable projective limit of Banach spaces), with seminorms

$$\nu_{k,K}(f) = \sup_{x \in K, |i| \le k} |f^{(i)}(x)|$$

as K ranges over compact subsets of \mathbb{R}^n and k ranges over positive integers.

Since we can write \mathbb{R}^n as a countable union of compacta, there is a *cofinal countable* collection of these seminorms, entitling us to say that the projective limit is 'countable'.

The space $\mathcal{D}^* = \mathcal{D}'$ of all **distributions** on \mathbf{R}^n is the continuous linear dual of the space \mathcal{D} of test functions. It is usually given the weak star-topology.

The space $S^* = S'$ is the space of **tempered distributions**. This is the continuous linear dual to the space of Schwartz functions. It is usually given the *weak star-topology*.

The space $\mathcal{E}^* = \mathcal{E}'$ is the space of **compactly-supported distributions**. It is the continuous linear dual to the space of all smooth functions. It is usually given the *weak star-topology*.

The continuous injections

$$\mathcal{D} \subset \mathcal{S} \subset \mathcal{E}$$

gives rise to continuous maps

$$\mathcal{E}^* o \mathcal{S}^* o \mathcal{D}^*$$

Since in $\mathcal{D} \subset \mathcal{S} \subset \mathcal{E}$ each has dense image, the maps of dual spaces are *injective*, but not surjective.

One version of the **Sobolev space** L_k^p is that it is the Banach space with norm

$$|f|_{L_k^p} = \sup_{|i| \le k} |f^{(i)}|_p$$

where the norm $||_p$ is the usual L^p -norm.

There is a certain possibility of confusion here: unlike the C^k -topologies just discussed, we do not know that L^p_k -limits of genuinely differentiable functions are again genuinely differentiable. The functions in L^p_k are said to be **weakly** k-times differentiable, to distinguish this notion of differentiability from the 'genuine' one. Nevertheless, for a function to possess a weak derivative is a *stronger* property than that of possessing a mere distributional derivative.

So there are two possible ways to give a careful definition of these Sobolev spaces, one 'from *inside*', the other 'from *outside*'.

The first is to say that L_k^p is the *completion* of \mathcal{D} with respect to the L_k^p -norm.

The second is to say that L_k^p is the collection of all distributions u so that all derivatives of u of order $\leq k$ are (given by) L^p functions.

The space of **locally** L^p functions on \mathbf{R}^n (with $1 \le p < \infty$) denoted $L^p_{\text{loc}} = L^p_{\text{loc}}(\mathbf{R}^n)$, is the *direct limit* of the Banach spaces $L^p(K)$ as K runs over compact subsets of \mathbf{R}^n . Since \mathbf{R}^n is a countable union of compacta, this is a *countable* direct limit.

For $0 , and for measure space <math>(X, \mu)$, the space $L^p(X, \mu)$ of functions f so that

$$\int_{X} |f(x)|^p \ d\mu(x) < \infty$$

Paul Garrett: Catalogue of Useful Topological Vectorspaces (March 1, 2011)

is a not locally convex topological vectorspace, complete with respect to the (translation-invariant) metric

$$d(f,g) = \int_X |f(x) - g(x)|^p d\mu(x) < \infty$$

Note that there is not $1/p^{th}$ power taken at the end, in contrast to the case $1 \le p < \infty$.

For $\varphi \in \mathcal{S}$ with $\int \varphi \neq 0$, for t > 0, let

$$\varphi_t(x) = t^n \varphi(tx)$$

For a tempered distribution u, define a function $M_{\varphi}u$ on \mathbf{R}^{n} by

$$(M_{\varphi}u)(x) = \sup_{t>0} |\varphi_t * u(x)|$$

Generally, for 0 , define the**Hardy space**

$$H^p = H^p(\mathbf{R}^n) = \{ u \in \mathcal{S}^* : \text{ for some } \varphi \in \mathcal{S}, M_{\varphi}u \in L^p \}$$

The Hardy spaces H^p , with $0 in some sense replace the <math>L^p$ spaces for p < 1. The analogous definitions for p > 1 provably give $L^p = H^p$, while this is not at all so for $p \le 1$. For p = 1, we have $H^1 \subset L^1$, but equality does not hold.

Although much more can be proven, all that is immediately visible from the definition is that H^p is a direct limit of Frechet spaces. The operator M_{φ} is a kind of **maximal operator**. The **standard maximal operator** M on functions on \mathbb{R}^n is defined by

$$(Mf)(x) = c_n \cdot \sup_{t>0} \frac{1}{t^n} \int_{|y-x| \le t} |f(y)| dy$$

The **Lipschitz** or **Holder** spaces Λ_{γ} for $0 < \gamma < 1$ consist of the functions f so that there is a constant $A = |f|_{\Lambda_{\gamma}}$ so that

$$|f(x)| \leq A$$
 almost everywhere

and also for each y

$$\sup_{x} |f(x+y) - f(x)| \le A \cdot |y|^{\gamma}$$

This is a Banach space.