
Dangerous and Illegal Operations in Calculus

Do we avoid differentiating discontinuous
functions because it’s impossible, unwise, or
simply out of ignorance and fear?
Despite the risks, many natural phenomena
are best understood in terms of generalized
functions unacceptable until relatively recently.
Fallacious arguments in false proofs of false
theorems in the early nineteenth century
generated too much paranoia. For example,
Heaviside’s mathematical innovations arising
in the physics of telegraph cables (1880-7) were
disregarded for 30 years.
Only in the 1930s Hadamard, Sobolev, and
others made systematic use of non-classical
generalized functions. In 1952 Laurent Schwartz
won a Fields Medal for systematic treatment of
these ideas.
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Desiderata

We want a large enough class of generalized
functions, or distributions, so that otherwise
illegal operations are perfectly fine. Within this
class:

• We can differentiate nearly any function
as many times as we like, regardless of
discontinuities.

• If limi

∫
uif exists for all very nice test

functions f then the limi ui exists as a
generalized function.

• Any generalized function u should be
approximate-able by a sequence of nice functions
ui in the weak sense that for all test functions f

lim
i

∫
uif =

∫
uf
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Differentiating discontinuous functions

Heaviside’s function is

H(x) =
{

1 (for x ≥ 0)
0 (for x < 0)

Yes, this function is discontinuous at 0, but the
discontinuity is of a straightforward nature.
Let f be a continuously differentiable function.
Let a < 0 and b > 0. Then∫ b

a

H(x) f ′(x) dx =
∫ b

0

f ′(x) dx

= f(b)− f(0)

by the fundamental theorem of calculus.
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We can evaluate
∫ b

a
H f ′ in another way.

Integration by parts is∫ b

a

u′ v dx = [uv]ba −
∫ b

a

u v′ dx

Despite the fact that H(x) is not differentiable
at x = 0, and is not even continuous there, let’s
not fret about this, and just integrate by parts∫ b

a

H(x) f ′(x) dx

= [H(x) f(x)]ba −
∫ b

a

H ′(x) f(x) dx

= f(b)−
∫ b

a

H ′(x) f(x) dx

4



Comparing the two expressions∫ b

a

H(x) f ′(x) dx = f(b)− f(0)

∫ b

a

H(x) f ′(x) dx = f(b)−
∫ b

a

H ′(x) f(x) dx

gives ∫ b

a

H ′(x) f(x) dx = f(0)

The alleged function H ′(x) is denoted

δ = H ′

δ is often called a monopole or Dirac’s
delta function (though it arose in the work
of Heaviside decades earlier).
But there is no such function as δ in any
classical sense.
If δ = H ′, since H is constant away from 0, it
looks like δ(x) = 0 for x 6= 0. But what happens
at 0?
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There is no classical δ

There is no function δ (in any usual sense) with
the property that∫ b

a

δ(x) f(x) dx = f(0)

for continuous f .
If δ(x) were continuous, then it would have to
be 0 for x 6= 0: if δ(xo) > 0 for xo 6= 0, then
δ(y) > 0 for y sufficiently near xo (and away
from 0). Make a continuous function f which is
0 except on a small neighborhood of xo. Then
f(0) = 0, but the integral of f against δ would
be positive, contradiction. ///

(Proving non-existence is impeded by not having
a concise description of integration of very
general types of functions!)

6



Approximating δ, δ′ weakly

There is no classical function δ, but there is
a sequence u1, u2, . . . of nice functions weakly
approximating δ in the sense that, for any
continuous function f

lim
j

∫ ∞

−∞
uj(x) f(x) dx = f(0)

In fact, there are many such sequences. For
example, the taller-and-narrower-tent functions

uj(x) =
{

0 (for |x| ≥ 1/j)
j(1− j|x|)/2 (for |x| ≤ 1/j)

Generalizing the pattern used there, for u
continuous on R, with u = 0 off [−1,+1], with
u ≥ 0, and

∫ +1

−1
u = 1, the sequence

uj(x) = j · u(jx)

approximates δ in this weak sense.
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Similarly, the dipole on R is δ′ = H ′′, defined
via integration by parts by∫ ∞

−∞
δ′(x) f(x) dx = −f ′(0)

There is no classical function δ′, but we can
approximate it weakly by many sequences of nice
functions. For example, with

u(x) =
{

3
4 (1− x2) (for |x| ≤ 1)

0 (for |x| ≥ 1)

(with the constant making the integral be 1)
we have uj(x) = ju(jx) → δ(x). More or less
taking a derivative gives

v(x) =
{
− 3

4x3 (for |x| ≤ 1)
0 (for |x| ≥ 1)

and then

vj(x) = j2v(jx) → δ′(x)
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δ is useful

We can systematically solve differential
equations.
The Laplacian ∆ on Rn is

∆ =
∂2

∂x2
1

+
∂2

∂x2
2

+ . . . +
∂2

∂x2
n

Given a function f on Rn, we might want to
solve for u in

∆u = f

A fundamental solution E for ∆ is a function
such that

∆E = δ

where δ is the delta on Rn. Then solve the
original equation by convolution

u(x) = (E ∗ f)(x) =
∫
Rn

E(x− y)f(y) dy

Proof?
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Proof: If ∆E = δ then

∆u(x) = ∆
∫
Rn

E(x− y)f(y) dy

=
∫
Rn

∆E(x− y)f(y) dy

(bravely moving the differentiation under the
integral!)

=
∫
Rn

δ(x− y)f(y) dy = f(x)

so we’ve solved the equation if we can find a
fundamental solution E. ///

In R1 since already H ′ = δ one fundamental
solution E for ∆ would be

E(x) =
∫ x

0

H(t) dt =
{

0 (x ≤ 0)
x (x > 0)

Another is
E(x) =

1
2
|x|
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Fundamental solutions for ∆

A fundamental solution E for ∆ would have
∆E(x) = 0 away from 0, but something strange
must happen at 0.
The rotational symmetry of ∆ suggests that
that a fundamental solution E for ∆ should be
rotationally invariant. Maybe

E(x) = const× |x|s

for some number s. Let ρ = |x|2. Compute

∆|x|s = ∆ρs/2 =
∑

i

∂

∂xi

(
sxiρ

s
2−1

)
= s

∑
i

(
ρ

s
2−1 + (

s

2
− 1)x2

i ρ
s
2−2

)
= s(n + s− 2) |x|s−2

For n ≥ 3 we have ∆|x|2−n = 0 away from 0.
What happens at 0? We claim

lim
s→−n

(s + n)|x|s = (const) · δ
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Proof: This illustrates regularization. First,
looking near 0 in Rn,∫

|x|≤1

|x|s = area(Sn−1) ·
∫ 1

0

rn−1+sdr

converges for Re(s) > −n.
Second, if f is differentiable and f(0) = 0, then
f(x)/|x| is still continuous at 0, so∫

Rn

f(x) |x|s dx converges

so for such f

lim
s→−n

(s + n)
∫

f(x)|x|s

=
∫

f(x)
|x|

|x|1−n · lim
s→−n

(s + n) = 0

That is, if f(0) = 0 then this limit is 0.
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Third, taking f(x) = e−|x|
2

in the integral∫
Rn

e−|x|
2
· |x|s dx

= area(Sn−1)
∫ ∞

0

e−r2
· rn−1+s dr

=
area(Sn−1)

n + s

∫ ∞

0

2re−r2
· rn+s dr

by integrating by parts. At s = −n letting
t = r2 in the integral gives∫ ∞

0

2re−r2
dr =

∫ ∞

0

e−t dt = 1

Thus

lim
s→−n

(n + s)
∫
Rn

e−|x|
2
|x|s = area(Sn−1)

= area(Sn−1) · e−|0|
2
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Finally, for continuous f

f(x) =
(
f(x)− f(0) · e−|x|

2
)

+ f(0) · e−|x|
2

The first function vanishes at 0, so

lim
s→−n

(s + n)
∫
Rn

(
f(x)− f(0)e−|x|

2
)
|x|s = 0

The second is a multiple of e−|x|
2
, so

lim
s→−n

(s + n)
∫
Rn

f(0)e−|x|
2
|x|s

= f(0) lim
s→2−n

∫
Rn

e−|x|
2
|x|s

= f(0) · area(Sn−1)

That is,

lim
s→−n

(s + n)
∫
Rn

f(x)|x|s = f(0) · area(Sn−1)

Thus, up to the area of an (n − 1)-sphere, we
have ∆|x|2−n = area(Sn−1) · δ ///
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Differentiating under the integral

Interchange of limits is dangerous.
Differentiating under the integral with respect
to a parameter is an example.
It is true that

1
2πi

∫ ∞

−∞

eixy

y − i
dy =

{
e−x (for x > 0)
0 (for x < 0)

Convergence is fragile, but ok. Differentiating
has a bad effect, but do it

1
2π

∫ ∞

−∞

y eixy

y − i
dy =

−e−x (for x > 0)
? (for x = 0)
0 (for x < 0)

Add the first to the second

1
2π

∫ ∞

−∞
eixy dy =

 0 (for x > 0)
? (for x = 0)
0 (for x < 0)
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In fact,
1
2π

∫ ∞

−∞
eixy dy = δ(x)

This integral also arises in Fourier inversion.
The Fourier transform f̂ of a reasonable
function f is

f̂(ξ) =
∫
Rn

f(x) e−ix·ξ dx

Fourier transform converts differentiation into
multiplication by an exponential, and vice versa,
by integration by parts

x̂jf(ξ) =
∫
Rn

xjf(x) e−ix·ξ dx

= i
∂

∂ξj

∫
Rn

f(x) e−ix·ξ dx = i
∂

∂ξj
f̂(ξ)

∂̂f

∂xj
(ξ) =

∫
Rn

∂

∂xj
f(x) e−ix·ξ dx

= −
∫
Rn

f(x)
∂

∂xj
e−ix·ξ dx = iξj f̂(ξ)
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Thus, to solve for u in a differential equation

−∆u + λu = f

we take Fourier transform of both sides

|ξ|2 · û + λû = f̂

and solve

û =
f̂

|ξ|2 + λ

At least for λ > 0 if f̂ is nice then we have a
nice expression for û.
How to recover u from û?
Fourier inversion recovers u from û by

u(x) =
1

(2π)n

∫
Rn

û(ξ) eix·ξ dξ
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The obvious attempt to prove Fourier inversion
is

1
(2π)n

∫
Rn

û(ξ) eix·ξ dξ

=
1

(2π)n

∫
Rn

∫
Rn

u(y) eix·ξ e−iy·ξ dξ dy

=
∫
Rn

u(y)
(

1
(2π)n

∫
Rn

ei(x−y)·ξ dξ

)
dy

and if we believe that the inner expression is
δ(x− y) then this is

=
∫
Rn

u(y) δ(x− y) dy = u(x)

But this begs the question.
It is necessary to express both δ and the
identically-1 function 1 as limits of nicer
functions.
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The ever-popular Gaussian on Rn is

g(x) = e−|x|
2/2

Its integral is (2π)n/2, so

uj(x) = (2π)−n/2 jng(jx) → δ(x)

in the sense that for nice f

lim
j

∫
Rn

uj(x)f(x) dx → f(0)

We can compute Fourier transforms

(2π)n/2j−nûj(ξ) =
∫
Rn

e−j2x·x/2 e−ix·ξdx

= e−ξ·ξ/2j2
∫
Rn

e−(jx+iξ/j)·(jx+iξ/j)/2dx

= g(ξ/j)
∫
Rn

e−jx·jx/2 dx = (2π)n/2 · g(ξ/j)
jn

by the complex variable trick of moving the
contour, so

ûj(ξ) = g(ξ/j)

19



As j →∞

g(ξ/j) = e−|ξ|
2/2j2

→ 1

since these functions flatten out more and more
as j → ∞. That is, for any reasonable function
f ∫

Rn

g(ξ/j) f(x) dx →
∫
Rn

1 · f(x) dx

though the approach to the limit certainly
depends on the particular f .
Thus, if we view ∫

eix·ξdξ

as a limit
lim

j

∫
ûj(ξ) eix·ξdξ

then by direct computation this is∫
eix·ξdξ = lim

j
uj(x) = δ(x)
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Even better: duality

Yes, many tangible generalized functions are
simply weak limits of more ordinary functions,
and admit computations from that viewpoint.
But there is another completely different
definition which offers new insight.
Observe that for a nice function u the function-
on-functions

λu(f) =
∫
Rn

u(x) f(x) dx

has the properties that

λu(αf + βg) = αλu(f) + βλu(g)

for complex α, β and functions f, g. Further,
with various mild hypotheses on u, if fi → f
uniformly then

λu(fi) → λu(f)
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This may suggest defining a generalized function
similarly.
The test functions D on Rn are infinitely
differentiable functions which are identically 0
outside some sufficiently large ball. This may
seem tricky or even grotesque (in the words of
H. Cartan), but there are many such functions.
For example,

f(x) =
{

e−1/(1−x2) (for |x| < 1)
0 (for |x| ≥ 1)

Test functions fi approach a test function f if
there is a common ball outside which they all
vanish, and if the fi and all their derivatives
approach f and its derivatives uniformly.
That is, for each j, given ε > 0 there is N
sufficiently large such that for i ≥ N and for
all x

|f (j)
i (x)− f (j)(x)| < ε
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The advantage of including derivatives in the
definition of convergence of a sequence is that it
makes all differentiation operators

f → ∂

∂xj
f

into continuous linear maps

∂

∂xj
: D → D

from the space of test functions to itself.
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The distributions D′ or generalized
functions on Rn are functions λ : D → C
with the linearity property

λ(αf + βg) = αλ(f) + βλ(g)

for complex α, β and functions f, g, and with
the sequential continuity property that if a
sequence of test function fi approaches f in the
sense above, then

λ(fi) → λ(f)

Certainly continuous functions or reasonably
integrable functions u give such continuous
functionals by

λu(f) =
∫
Rn

u(x) f(x) dx
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Differentiation of distributions is allowed
without restriction, defined exactly to extend
integration by parts to weak limits:(

∂

∂xj
λ

)
(f) = −λ

(
∂

∂xj
f

)

The continuity of differentiations as maps
D → D assures that derivatives of distributions
are again continuous linear functionals, hence
are still inside the class of distributions.
The weak limit topology on distributions says
that λi → λ in D′ if for every test function f
the numbers λi(f) approach λ(f).

Theorem: Weak limits of sequences of
distributions are distributions.
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Smoothing

But what have we accidentally included by this
inclusive rather than constructive definition?
Any unnecessary crazy things?
The theorem below says we can smooth a
distribution into a nearby distribution which
is literally a differentiable function. Thus the
definition of distribution does not include
unnecessary things.
Let Tx be translation Txf(y) = f(x + y). This
is a continuous linear map of test functions to
themselves.

Theorem: Let fi be test functions weakly
approaching δ. Let u be any distribution. Then
the smoothings

Tfi
u(x) = u(Txf) ∼

∫
Rn

f(x + y) u(y) dy

are infinitely differentiable functions and

Tfi
u → u (weakly)
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Fourier transforms revisited

Fourier transforms of test functions are never
test functions. They are holomorphic functions
defined on open sets containing the real line.
The class S of Schwartz functions on Rn is
slightly larger than the test functions D.
A function ϕ on Rn is of rapid decay if, for
every N ,

sup
x∈Rn

(1 + |x|2)N · |ϕ(x)| < ∞

The Schwartz functions S are infinitely
differentiable functions f such that f and all
its derivatives are of rapid decay.

Lemma: Fourier transform maps S to itself,
and is a bijection.

Proof: Fourier transform interchanges
multiplication to differentiation. ///
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For a multi-index m = (m1, . . . ,mn) in Zn, use
the standard abbreviation

∂m =
(

∂

∂x1

)m1

. . .

(
∂

∂xn

)mn

A sequence fi of Schwartz functions converges
to f if for all N and for all m

sup
x∈Rn

(1 + |x|2)N · |∂m(f − fi)(x)| → 0

Lemma: Fourier transform S → S is
continuous.

Proof: Fourier transform interchanges
differentiation and multiplication. ///

In fact, S is sequentially complete. And D
is sequentially complete with the corresponding
notion of convergence, and the inclusion D → S
is continuous.
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More duality

The space S ′ ⊂ D′ of tempered distributions
consists of distributions u which extend to a
continuous linear functionals on S (not merely
on D).
Not every distribution is tempered.
Fourier transforms û of tempered
distributions u are defined via the Plancherel
formula as

û(f) = u(f̂)

The continuity of Fourier transform on S
assures that û is again a tempered distribution,
and u → û is continuous in the weak topology
on S ′.
As with distributions, every tempered
distribution can be weakly approximated by
infinitely differentiable functions.

29



A function u is of moderate growth if for
some N

sup
x∈Rn

(1 + |x|2)−N · |u(x)| < ∞

A continuous function u of moderate growth
gives a tempered distribution λu by

λu(f) =
∫
Rn

u(x) f(x) dx

We have already insinuated that the Fourier
transform of 1 is δ. Similarly

Proposition: the Fourier transform of the
tempered distribution xm1

1 . . . xmn
n is i|m| times

∂mδ. ///
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us(x) = |x|s is a tempered distribution for
Re(s) ≥ −n. Compute its Fourier transform?
It is rotationally invariant, so its Fourier
transform will be also. It is positive-
homogeneous of degree s, and the change-of-
variables property

f(c · x)̂ (ξ) = c−nf̂(ξ/c)

suggests that

cs ûs(ξ) = c−nûs(ξ/c)

or replacing c by 1/c

c−(s+n) ûs(ξ) = ûs(c ξ)
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Thus, possibly

ûs = consts · u−(s+n)

However, if Re(s) > −n to have convergence of
the integral for us, then Re(−(s + n)) < 0. We
need Re(−(s + n)) > −n for convergence of the
integral for u−(s+n). The range in which both
inequalities are met is

−n < Re(s) < 0

But for Re(s) >> 0 the Fourier transform
u−(s+n) of us seems to be given by a horribly
divergent integral...
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