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Among all linear operators on Hilbert spaces, the compact ones (defined below) are the simplest, and most
closely imitate finite-dimensional operator theory. In addition, compact operators are important in practice.
We prove a spectral theorem for self-adjoint compact operators, which does not use broader discussions
of properties of spectra, only using the Cauchy-Schwarz-Bunyakowsky inequality and the definition of self-
adjoint compact operator.

1. Boundedness, continuity, operator norms

[1.0.1] Definition: A linear (not necessarily continuous) map T : X → Y from one Hilbert space to another
is bounded if, for all ε > 0, there is δ > 0 such that |Tx|Y < ε for all x ∈ X with |x|X < δ.

[1.0.2] Proposition: For a linear, not necessarily continuous, map T : X → Y of Hilbert spaces, the
following three conditions are equivalent:
(i) T is continuous
(ii) T is continuous at 0
(iii) T is bounded

Proof: For T continuous as 0, given ε > 0 and x ∈ X, there is small enough δ > 0 such that |Tx′ − 0|Y < ε
for |x′ − 0|X < δ. For |x′′ − x|X < δ, using the linearity,

|Tx′′ − Tx|X = |T (x′′ − x)− 0|X < δ

That is, continuity at 0 implies continuity.

Since |x| = |x− 0|, continuity at 0 is immediately equivalent to boundedness. ///

[1.0.3] Definition: The kernel kerT of a linear (not necessarily continuous) linear map T : X → Y from
one Hilbert space to another is

kerT = {x ∈ X : Tx = 0 ∈ Y }

[1.0.4] Proposition: The kernel of a continuous linear map T : X → Y is closed.

Proof: For T continuous

kerT = T−1{0} = X − T−1(Y − {0}) = X − T−1(open) = X − open = closed

since the inverse images of open sets by a continuous map are open. ///
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[1.0.5] Definition: The operator norm |T | of a linear map T : X → Y is

operator norm T = |T | = sup
x∈X : |x|X≤1

|Tx|Y

[1.0.6] Corollary: A linear map T : X → Y is continuous if and only if its operator norm is finite. ///

2. Adjoint maps

[2.0.1] Definition: An adjoint T ∗ of a continuous linear map T : X → Y from a pre-Hilbert space X to a
pre-Hilbert space Y (if T ∗ exists) is a continuous linear map T ∗ : Y → X such that

〈Tx, y〉Y = 〈x, T ∗y〉X

[2.0.2] Remark: When a pre-Hilbert space X is not complete, that is, is not a Hilbert space, an operator
T : X → Y may fail to have an adjoint.

[2.0.3] Theorem: A continuous linear map T : X → Y from a Hilbert space X to a pre-Hilbert space Y
has a unique adjoint T ∗.

[2.0.4] Remark: The target space of T need not be a Hilbert space, that is, need not be complete.

Proof: For each y ∈ Y , the map
λy : X −→ C

given by
λy(x) = 〈Tx, y〉

is a continuous linear functional on X. By Riesz-Fischer, there is a unique xy ∈ X so that

〈Tx, y〉 = λy(x) = 〈x, xy〉

Try to define T ∗ by T ∗y = xy. This is a well-defined map from Y to X, and has the adjoint property
〈Tx, y〉Y = 〈x, T ∗y〉X .

To prove that T ∗ is continuous, prove that it is bounded. From Cauchy-Schwarz-Bunyakowsky

|T ∗y|2 = |〈T ∗y, T ∗y〉X | = |〈y, TT ∗y〉Y | ≤ |y| · |TT ∗y| ≤ |y| · |T | · |T ∗y|

where |T | is the operator norm. For T ∗y 6= 0, divide by it to find

|T ∗y| ≤ |y| · |T |

Thus, |T ∗| ≤ |T |. In particular, T ∗ is bounded. Since (T ∗)∗ = T , by symmetry |T | = |T ∗|. Linearity of T ∗

is easy. ///

[2.0.5] Corollary: For a continuous linear map T : X → Y of Hilbert spaces, T ∗∗ = T . ///

An operator T ∈ End(X) commuting with its adjoint is normal, that is,

TT ∗ = T ∗T
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This only applies to operators from a Hilbert space to itself. An operator T is self-adjoint or hermitian if
T = T ∗. That is, T is hermitian when

〈Tx, y〉 = 〈x, Ty〉 (for all x, y ∈ X)

An operator T is unitary when

TT ∗ = identity map on Y T ∗T = identity map on X

There are simple examples in infinite-dimensional spaces where TT ∗ = 1 does not imply T ∗T = 1, and vice-
versa. Thus, it does not suffice to check something like 〈Tx, Tx〉 = 〈x, x〉 to prove unitariness. Obviously
hermitian operators are normal, as are unitary operators, using the more careful definition.

3. Stable subspaces and complements

Let T : X → X be a continuous linear operator on a Hilbert space X. A vector subspace Y is T -stable or
T -invariant if Ty ∈ Y for all y ∈ Y . Often one is most interested in the case that the subspace be closed in
addition to being invariant.

[3.0.1] Proposition: For T : X → X a continuous linear operator on a Hilbert space X, and Y a T -stable
subspace, Y ⊥ is T ∗-stable.

Proof: For z ∈ Y ⊥ and y ∈ Y ,
〈T ∗z, y〉 = 〈z, T ∗∗y〉 = 〈z, Ty〉

since T ∗∗ = T , from above. Since Y is T -stable, Ty ∈ Y , and this inner product is 0, and T ∗z ∈ Y ⊥.
///

[3.0.2] Corollary: For continuous self-adjoint T on a Hilbert space X, and Y a T -stable subspace, both Y
and Y ⊥ are T -stable. ///

[3.0.3] Remark: Normality of T : X → X is insufficient to assure the conclusion of the corollary, in general.
For example, with the two-sided `2 space

X = {{cn : n ∈ Z} :
∑
n∈Z
|cn|2 < ∞}

the right-shift operator
(Tc)n = cn−1 (for n ∈ Z)

has adjoint the left shift operator

(T ∗c)n = cn+1 (for n ∈ Z)

and
T ∗T = TT ∗ = 1X

So this T is not merely normal, but unitary. However, the T -stable subspace

Y = {{cn} ∈ X : ck = 0 for k < 0}

is not T ∗-stable, nor is its orthogonal complement T -stable.

On the other hand, adjoint-stable collections of operators have a good stability result:
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[3.0.4] Proposition: Suppose for every T in a set A of bounded linear operators on a Hilbert space V the
adjoint T ∗ is also in A. Then, for an A-stable subspace W of V , the orthogonal complement W⊥ is also
A-stable.

Proof: For y in W⊥ and T ∈ A, for x ∈W ,

〈x, Ty〉 = 〈T ∗x, y〉 ∈ 〈W, y〉 = {0}

since T ∗ ∈ A. ///

4. Spectrum, eigenvalues

For a continuous linear operator T ∈ End(X), the λ-eigenspace of T is

Xλ = {x ∈ X : Tx = λx}

If this space is not simply {0}, then λ is an eigenvalue.

[4.0.1] Proposition: An eigenspace Xλ for a continuous linear operator T on X is a closed and T -stable
subspace of X. For normal T the adjoint T ∗ acts by the scalar λ on Xλ.

Proof: The λ-eigenspace is the kernel of the continuous linear map T −λ, so is closed. The stability is clear,
since the operator restricted to the eigenspace is a scalar operator. For v ∈ Xλ, using normality,

(T − λ)T ∗v = T ∗(T − λ)v = T ∗ · 0 = 0

Thus, Xλ is T ∗-stable. For x, y ∈ Xλ,

〈(T ∗ − λ)x, y〉 = 〈x, (T − λ)y〉 = 〈x, 0〉

Thus, (T ∗ − λ)x = 0. ///

[4.0.2] Proposition: For T normal, for λ 6= µ, and for x ∈ Xλ, y ∈ Xµ, always 〈x, y〉 = 0. For T self-adjoint,
if Xλ 6= 0 then λ ∈ R. For T unitary, if Xλ 6= 0 then |λ| = 1.

Proof: Let x ∈ Xλ, y ∈ Xµ, with µ 6= λ. Then

λ〈x, y〉 = 〈Tx, y〉 = 〈x, T ∗y〉 = 〈x, µy〉 = µ〈x, y〉

invoking the previous result. Thus,
(λ− µ)〈x, y〉 = 0

giving the result. For T self-adjoint and x a non-zero λ-eigenvector,

λ〈x, x〉 = 〈x, T ∗x〉 = 〈x, Tx〉 = 〈x, λx〉 = λ〈x, x〉

Thus, (λ−λ)〈x, x〉 = 0. Since x is non-zero, the result follows. For T unitary and x a non-zero λ-eigenvector,

〈x, x〉 = 〈T ∗Tx, x〉 = 〈Tx, Tx〉 = |λ|2 · 〈x, x〉

///

In what follows, for a complex scalar λ write simply λ for scalar multiplication by λ on a Hilbert space X.
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[4.0.3] Definition: The spectrum σ(T ) of a continuous linear operator T : X → X on a Hilbert space X is
the collection of complex numbers λ such that T − λ does not have a continuous linear inverse.

[4.0.4] Definition: The discrete spectrum σdisc(T ) is the collection of complex numbers λ such that T − λ
fails to be injective. In other words, the discrete spectrum is the collection of eigenvalues.

[4.0.5] Definition: The continuous spectrum σcont(T ) is the collection of complex numbers λ such that
T − λ · 1X is injective, does have dense image, but fails to be surjective.

[4.0.6] Definition: The residual spectrum σres(T ) is everything else: neither discrete nor continuous
spectrum. That is, the residual spectrum of T is the collection of complex numbers λ such that T − λ · 1X
is injective, and fails to have dense image (so is certainly not surjective).

[4.0.7] Remark: To see that there are no other possibilities, note that the Closed Graph Theorem implies
that a bijective, continuous, linear map T : X → Y of Banach spaces has continuous inverse. Indeed,
granting that the inverse exists as a linear map, its graph is

graph of T−1 = {(y, x) ∈ Y ×X : (x, y) in the graph of T ⊂ X × Y }

Since the graph of T is closed, the graph of T−1 is closed, and by the Closed Graph Theorem T−1 is
continuous.

[4.0.8] Proposition: A normal operator T : X → X has empty residual spectrum.

Proof: The adjoint of T − λ is T ∗ − λ, so consider λ = 0 to lighten the notation. Suppose that T does not
have dense image. Then there is non-zero z such that

0 = 〈z, Tx〉 = 〈T ∗z, x〉 (for every x ∈ X)

Therefore T ∗z = 0, and the 0-eigenspace Z of T ∗ is non-zero. Since T ∗(Tz) = T (T ∗z) = T (0) = 0 for z ∈ Z,
T ∗ stabilizes Z. That is, Z is both T and T ∗-stable. Therefore, T = (T ∗)∗ acts on Z by (the complex
conjugate of) 0, and T has non-trivial 0-eigenvectors, contradiction. ///

5. Compact operators

A set in a topological space is pre-compact if its closure is compact. [1] A linear operator T : X → Y on
Hilbert spaces is compact when it maps the unit ball in X to a pre-compact set in Y . Equivalently, T is
compact if and only if it maps bounded sequences in X to sequences in Y with convergent subsequences.

[5.0.1] Remark: The same definition makes sense for operators on Banach spaces, but many good features
of compact operators on Hilbert spaces are not shared by compact operators on Banach spaces.

[5.0.2] Proposition: An operator-norm limit of compact operators is compact. A compact operator
T : X → Y with Y a Hilbert space is an operator norm limit of finite rank operators.

Proof: Let Tn → T in uniform operator norm, with compact Tn. Given ε > 0, let n be sufficiently large
such that |Tn − T | < ε/2. Since Tn(B) is pre-compact, there are finitely many y1, . . . , yt such that for any
x ∈ B there is i such that |Tnx− yi| < ε/2. By the triangle inequality

|Tx− yi| ≤ |Tx− Tnx|+ |Tnx− yi| < ε

[1] Beware, sometimes pre-compact has a more restrictive meaning than having compact closure.
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Thus, T (B) is covered by finitely many balls of radius ε. ///

A continuous linear operator is of finite rank if its image is finite-dimensional. A finite-rank operator is
compact, since all balls are pre-compact in a finite-dimensional Hilbert space.

[5.0.3] Theorem: A compact operator T : X → Y with Y a Hilbert space is an operator norm limit of
finite rank operators.

Proof: Let B be the closed unit ball in X. Since T (B) is pre-compact it is totally bounded, so for given
ε > 0 cover T (B) by open balls of radius ε centered at points y1, . . . , yn. Let p be the orthogonal projection
to the finite-dimensional subspace F spanned by the yi and define Tε = p ◦ T . Note that for any y ∈ Y and
for any yi

|p(y)− yi| ≤ |y − yi|

since y = p(y) + y′ with y′ orthogonal to all yi. For x in X with |x| ≤ 1, by construction there is yi such
that |Tx− yi| < ε. Then

|Tx− Tεx| ≤ |Tx− yi|+ |Tεx− yi| < ε+ ε

Thus, TεT in operator norm as ε→ 0. ///

[5.0.4] Remark: The theorem is false in Banach spaces, although the only example known to this author
(Per Enflo, Acta Math., vol. 130, 1973) is complicated.

6. Hilbert-Schmidt operators

[6.1] Hilbert-Schmidt operators given by integral kernels

Originally Hilbert-Schmidt operators on function spaces L2(X) arose as operators given by integral kernels:
for X and Y σ-finite measure spaces, and for integral kernel K ∈ L2(X ×Y ), the associated Hilbert-Schmidt

operator [2]

T : L2(X) −→ L2(Y )

is

Tf(y) =

∫
X

K(x, y) f(x) dx

By Fubini’s theorem and the σ-finiteness, for orthonormal bases ϕα for L2(X) and ψβ for L2(Y ), the collection
of functions ϕα(x)ψβ(y) is an orthonormal basis for L2(X × Y ). Thus, for some scalars cij ,

K(x, y) =
∑
ij

cij ϕi(x) ψj(y)

Square-integrability is ∑
ij

|cij |2 = |K|2L2(X×Y ) < ∞

The indexing sets may as well be countable, since an uncountable sum of positive reals cannot converge.
Given f ∈ L2(X), the image Tf is in L2(Y ), since

[2] The σ-finiteness is necessary to make Fubini’s theorem work as expected.
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Tf(y) =
∑
ij

cij〈f, ϕi〉ψj(y)

has L2(Y ) norm easily estimated by

|Tf |2L2(Y ) ≤
∑
ij

|cij |2|〈f, ϕi〉|2 |ψj |2L2(Y ) ≤ |f |
2
L2(X)

∑
ij

|cij |2 |ϕi|2L2(X) |ψj |
2
L2(Y )

= |f |2L2(X)

∑
ij

|cij |2 = |f |2L2(X) · |K|
2
L2(X×Y )

The adjoint T ∗ : L2(Y )→ L2(X) has kernel

K∗(y, x) = K(x, y)

by computing

〈Tf, g〉L2(Y ) =

∫
Y

(∫
X

K(x, y)f(x) dx
)
g(y) dy =

∫
X

f(x)
(∫

Y

K(x, y) g(y) dy
)
dx

[6.2] Intrinsic characterization of Hilbert-Schmidt operators

The intrinsic characterization of Hilbert-Schmidt operators V → W on Hilbert spaces V,W is as the
completion of the space of finite-rank operators V → W with respect to the Hilbert-Schmidt norm, whose
square is

|T |2HS = tr(T ∗T ) (for T : V →W and T ∗ : W ∗ → V ∗)

The trace of a finite-rank operator from a Hilbert space to itself can be described in coordinates and then
proven independent of the choice of coordinates, or trace can be described intrinsically, obviating need for
proof of coordinate-independence. First, in coordinates, for an orthonormal basis ei of V , and finite-rank
T : V → V , define

tr(T ) =
∑
i

〈Tei, ei〉 (with reference to orthonormal basis {ei})

With this description, one would need to show independence of the orthonormal basis. For the intrinsic
description, consider the map from V ⊗ V ∗ to finite-rank operators on V induced from the bilinear map [3]

v × λ −→
(
w → λ(w) · v

)
(for v ∈ V and λ ∈ V ∗)

Trace is easy to define in these terms [4]

tr(v ⊗ λ) = λ(v)

[3] The intrinsic characterization of the tensor product V ⊗k W of two k-vectorspaces is that it is a k-vectorspace

with a k-bilinear map b : V ×W → V ⊗k W such that for any k-bilinear map B : V ×W → X there is a unique

linear β : V ⊗W → X giving a commutative diagram

V ⊗k W
∃!

##
V ×W

b

OO

∀B //___ X

[4] In some contexts the map v ⊗ λ→ λ(v) is called a contraction.
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and
tr
(∑
v,λ

v ⊗ λ
)

=
∑
v,λ

λ(v) (finite sums)

Expression of trace in terms of an orthonormal basis {ej} is easily obtained from the intrinsic form: given a
finite-rank operator T and an orthonormal basis {ei}, let λi(v) = 〈v, ei〉. We claim that

T =
∑
i

Tei ⊗ λi

Indeed, (∑
i

Tei ⊗ λi
)

(v) =
∑
i

Tei · λi(v) =
∑
i

Tei · 〈v, ei〉 = T
(∑

i

ei · 〈v, ei〉
)

= Tv

Then the trace is

trT = tr
(∑

i

Tei ⊗ λi
)

=
∑
i

tr(Tei ⊗ λi) =
∑
i

λi(Tei) =
∑
i

〈Tei, ei〉

Similarly, adjoints T ∗ : W → V of maps T : V → W are expressible in these terms: for v ∈ V , let λv ∈ V ∗
be λv(v

′) = 〈v′, v〉, and for w ∈W let µw ∈W ∗ be µw(w′) = 〈w′, w〉. Then

(w ⊗ λv)∗ = v ⊗ µw (for w ∈W and v ∈ V )

since
〈(w ⊗ λv)v′, w′〉 = 〈λv(v′)w,w′〉 = 〈v′, v〉〈w,w′〉 = 〈v′, 〈w′, w〉 · v〉 = 〈v′, (v ⊗ µw)w′〉

Since it is defined as a completion, the collection of all Hilbert-Schmidt operators T : V → W is a Hilbert
space, with the hermitian inner product

〈S, T 〉 = tr(T ∗S)

[6.2.1] Proposition: The Hilbert-Schmidt norm | |HS dominates the uniform operator norm | |op, so Hilbert-
Schmidt operators are compact.

Proof: Given ε > 0, let e1 be a vector with |e1| ≤ 1 such that |Tv1| ≥ |T |op − ε. Extend {e1} to an
orthonormal basis {ei}. Then

|T |2op = sup
|v|≤1

|Tv|2 ≤ |Tv1|2 + ε ≤ ε+
∑
j

|Tvj |2 = |T |2HS

Thus, Hilbert-Schmidt norm limits of finite-rank operators are operator-norm limits of finite-rank operators,
so are compact. ///

[6.3] Integral kernels yield Hilbert-Schmidt operators

It is already nearly visible that the L2(X × Y ) norm on kernels K(x, y) is the same as the Hilbert-Schmidt
norm on corresponding operators T : V →W , yielding

[6.3.1] Proposition: Operators T : L2(X)→ L2(Y ) given by integral kernels K ∈ L2(X × Y ) are Hilbert-
Schmidt, that is, are Hilbert-Schmidt norm limits of finite-rank operators.

Proof: To prove properly that the L2(X × Y ) norm on kernels K(x, y) is the same as the Hilbert-Schmidt
norm on corresponding operators T : V → W , T should be expressed as a limit of finite-rank operators Tn
in terms of kernels Kn(x, y) which are finite sums of products ϕ(x)⊗ ψ(y). Thus, first claim that

K(x, y) =
∑
i

ϕi(x)Tϕi(y) (in L2(X × Y ))

8



Paul Garrett: Continuous operators on Hilbert spaces (March 31, 2014)

Indeed, the inner product in L2(X × Y ) of the right-hand side against any ϕi(x)ψj(y) agrees with the inner
product of the latter against K(x, y), and we have assumed K ∈ L2(X × Y ). With K =

∑
ij cijϕi ⊗ ψj ,

Tϕi =
∑
j

cij ψj

Since
∑
ij |cij |2 converges,

lim
i
|Tϕi|2 = lim

i

∑
j

|cij |2 = 0

and
lim
n

∑
i>n

|Tϕi|2 = lim
n

∑
i>n

|cij |2 = 0

so the infinite sum
∑
i ϕi ⊗ Tϕi converges to K in L2(X × Y ). In particular, the truncations

Kn(x, y) =
∑

1≤i≤n

ϕi(x)Tϕi(y)

converge to K(x, y) in L2(X × Y ), and give finite-rank operators

Tnf(y) =

∫
X

Kn(x, y) f(x) dx

We claim that Tn → T in Hilbert-Schmidt norm. It is convenient to note that by a similar argument
K(x, y) =

∑
i T
∗ψi(x)ψi(y). Then

|T − Tn|2HS = tr
(

(T − Tn)∗ ◦ (T − Tn)
)

=
∑
i,j>n

tr
((
T ∗ψi ⊗ ψi

)
◦
(
ϕj ⊗ Tϕj

))

=
∑
i,j>n

〈T ∗ψi, ϕj〉L2(X) · 〈Tϕj , ψi〉L2(Y ) =
∑
i,j>n

|cij |2 −→ 0 (as n→∞)

since
∑
ij |cij |2 converges. Thus, Tn → T in Hilbert-Schmidt norm. ///

[6.3.2] Remark: With σ-finiteness, the argument above is correct whether K is measurable with respect
to the product sigma-algebra or only with respect to the completion.

7. Spectral theorem for self-adjoint compact operators

The λ-eigenspace Vλ of a self-adjoint compact operator T on a Hilbert space T is

Vλ = {v ∈ V : Tv = λ · v}

We have already shown that eigenvalues, if any, of self-adjoint T are real.

[7.0.1] Theorem: Let T be a self-adjoint compact operator on a non-zero Hilbert space V .
• The completion of ⊕Vλ is all of V . In particular, there is an orthonormal basis of eigenvectors.
• The only possible accumulation point of the set of eigenvalues is 0. For infinite-dimensional V , 0 is an
accumulation point.
• Every eigenspaces Xλ for λ 6= 0 is finite-dimensional. The 0-eigenspace may be {0} or may be infinite-
dimensional.
• (Rayleigh-Ritz) One or the other of ±|T |op is an eigenvalue of T .
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A slightly-clever alternative expression for the operator norm is needed:

[7.0.2] Lemma: For T a self-adjoint continuous linear operator on a non-zero Hilbert space X,

|T |op = sup
|x|≤1

|〈Tx, x〉|

Proof: Let s be that supremum. By Cauchy-Schwarz-Bunyakowsky, s ≤ |T |op. For any x, y ∈ Y , by
polarization

2|〈Tx, y〉+ 〈Ty, x〉| = |〈T (x+ y), x+ y〉 − 〈T (x− y), x− y〉|

≤ |〈T (x+ y), x+ y〉|+ |〈T (x− y), x− y〉| ≤ s|x+ y|2 + s|x− y|2 = 2s(|x|2 + |y|2)

With y = t · Tx with t > 0, because T = T ∗,

〈Tx, y〉 = 〈Tx, t · Tx〉 = t · |Tx|2 ≥ 0 (for y = t · Tc with t > 0)

and

〈Ty, x〉 = 〈t · T 2x, t · x〉 = t · 〈Tx, Tx〉 = t · |Tx|2 ≥ 0 (for y = t · Tc with t > 0)

Thus,

|〈Tx, y〉|+ |〈Ty, x〉| = 〈Tx, y〉+ 〈Ty, x〉 = |〈Tx, y〉+ 〈Ty, x〉| (for y = t · Tc with t > 0)

From this, and from the polarization identity divided by 2,

|〈Tx, y〉|+ |〈Ty, x〉| = |〈Tx, y〉+ 〈Ty, x〉| ≤ s(|x|2 + |y|2) (with y = t · Tx)

Divide through by t to obtain

|〈Tx, Tx〉|+ |〈T 2x, x〉| ≤ s

t
· (|x|2 + |Tx|2)

Minimize the right-hand side by taking t2 = |Tx|/|x|, and note that 〈T 2x, x〉 = 〈Tx, Tx〉, giving

2|〈Tx, Tx〉| ≤ 2s · |x| · |Tx| ≤ 2s · |x|2 · |T |op

Thus, |T |op ≤ s. ///

Now the proof of the theorem:

Proof: The last assertion of the theorem is crucial. To prove it, use the expression

|T | = sup
|x|≤1

|〈Tx, x〉|

and use the fact that any value 〈Tx, x〉 is real. Choose a sequence {xn} so that |xn| ≤ 1 and |〈Tx, x〉| → |T |.
Replacing it by a subsequence if necessary, the sequence 〈Tx, x〉 of real numbers has a limit λ = ±|T |.

Then
0 ≤ |Txn − λxn|2 = 〈Txn − λxn, Txn − λxn〉

= |Txn|2 − 2λ〈Txn, xn〉+ λ2|xn|2 ≤ λ2 − 2λ〈Txn, xn〉+ λ2

The right-hand side goes to 0. By compactness of T , replace xn by a subsequence so that Txn converges to
some vector y. The previous inequality shows λxn → y. For λ = 0, we have |T | = 0, so T = 0. For λ 6= 0,
λxn → y implies

xn −→ λ−1y

10
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For x = λ−1y,
Tx = λx

and x is the desired eigenvector with eigenvalue ±|T |. ///

Now use induction. The completion Y of the sum of non-zero eigenspaces is T -stable. We claim that the
orthogonal complement Z = Y ⊥ is T -stable, and the restriction of T to is a compact operator. Indeed, for
z ∈ Z and y ∈ Y ,

〈Tz, y〉 = 〈z, Ty〉 = 0

proving stability. The unit ball in Z is a subset of the unit ball B in X, so has pre-compact image TB∩Z in
X. Since Z is closed in X, the intersection TB ∩ Z of Z with the pre-compact TB is pre-compact, proving
T restricted to Z = Y ⊥ is still compact. Self-adjoint-ness is clear.

By construction, the restriction T1 of T to Z has no eigenvalues on Z, since any such eigenvalue would also
be an eigenvalue of T on Z. Unless Z = {0} this would contradict the previous argument, which showed
that ±|T1| is an eigenvalue on a non-zero Hilbert space. Thus, it must be that the completion of the sum of
the eigenspaces is all of X. ///

To prove that eigenspaces Vλ for λ 6= 0 are finite-dimensional, and that there are only finitely-many
eigenvalues λ with |λ| > ε for given ε > 0, let B be the unit ball in

Y =
∑
|λ| > ε

Xλ

The image of B by T contains the ball of radius ε in Y . Since T is compact, this ball is pre-compact, so Y
is finite-dimensional. Since the dimensions of the Xλ are positive integers, there can be only finitely-many
of them with |λ| > ε, and each is finite-dimensional. It follows that the only possible accumulation point of
the set of eigenvalues is 0, and, for X infinite-dimensional, 0 must be an accumulation point. ///

8. Appendix: topologies on finite-dimensional spaces

In the proof that Hilbert-Schmidt operators are compact, we needed the fact that finite-dimensional subspaces
of Hilbert spaces are linearly homeomorphic to Cn with its usual topology. In fact, it is true that any finite
dimensional topological vector space is linearly homeomorphic to Cn. That is, we need not assume that the
space is a Hilbert space, a Banach space, a Fréchet space, locally convex, or anything else. However, the
general argument is a by-product of the development of the general theory of topological vector spaces, and
is best delayed. Thus, we give more proofs that apply to Hilbert and Banach spaces.

[8.0.1] Lemma: Let W be a finite-dimensional subspace of a pre-Hilbert space V . Let w1, . . . , wn be a
C-basis of W . Then the continuous linear bijection

ϕ : Cn →W

by

ϕ(z1, . . . , zn) =
∑
i

zi · wi

is a homeomorphism. And W is closed.

Proof: Because vector addition and scalar multiplication are continuous, the map ϕ is continuous. It is
obviously linear, and since the wi are linearly independent it is an injection.

Let v1, . . . , vn be an orthonormal basis for W . Consider the continuous linear functionals

λi(v) = 〈v, vi〉

11
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As intended, we have λi(vj) = 0 for i 6= j, and λi(vi) = 1. Define continuous linear ψ : W → Cn by

ψ(v) = (λ1(v), . . . , λn(v))

The inverse map to ψ is continuous, because vector addition and scalar multiplication are continuous. Thus,
ψ is a linear homeomorphism W ≈ Cn.

Generally, we can use Gram-Schmidt to create an orthonormal basis vi from a given basis wi. Let e1, . . . , en
be the standard basis of Cn. Let fi = ψ(wi) be the inverse images in Cn of the wi. Let A : Cn → Cn be a
linear homeomorphism Cn → Cn sending ei to fi, that is, Aei = fi. Then

ϕ = ψ−1 ◦A : Cn →W

since both ϕ and ψ−1 ◦A send ei to wi. Both ψ and A are linear homeomorphisms, so the composition ϕ is
also.

Since Cn is a complete metric space, so is its homeomorphic image W , so W is necessarily closed. ///

Now we give a somewhat different proof of the uniqueness of topology on finite-dimensional normed spaces,
using the Hahn-Banach theorem. Again, invocation of Hahn-Banach is actually unnecessary, since the same
conclusion will be reached (later) without local convexity. The only difference in the proof is the method of
proving existence of sufficiently many linear functionals.

[8.0.2] Lemma: Let W be a finite-dimensional subspace of a normed space V . Let w1, . . . , wn be a C-basis
of W . Then the continuous linear bijection

ϕ : Cn →W

by

ϕ(z1, . . . , zn) =
∑
i

zi · wi

is a homeomorphism. And W is closed.

Proof: Let v1 be a non-zero vector in W , and from Hahn-Banach let λ1 be a continuous linear functional
on W such that λ1(v1) = 1. By the (algebraic) isomorphism theorem

image λ1 ≈W/ kerλ1

so dimW/ kerλ1 = 1. Take v2 6= 0 in kerλ1 and continuous linear functional λ2 such that λ2(v2) = 1.
Replace v1 by v1 − λ2(v1)v2. Then still λ1(v1) = 1 and also λ2(v1) = 0. Thus, λ1 and λ2 are linearly
independent, and

(λ1, λ2) : W → C2

is a surjection. Choose v3 6= 0 in kerλ1 ∩ kerλ2, and λ3 such that λ3(v3) = 1. Replace v1 by v1 − λ3(v1)v3
and v2 by v2 − λ3(v2)v3. Continue similarly until⋂

kerλi = {0}

Then we obtain a basis v1, . . . , vn for W and an continuous linear isomorphism

ψ = (λ1, . . . , λn) : W → Cn

that takes vi to the standard basis element ei of Cn. On the other hand, the continuity of scalar multiplication
and vector addition assures that the inverse map is continuous. Thus, ψ is a continuous isomorphism.
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Now let fi = ψ(wi), and let A be a (continuous) linear isomorphism Cn → Cn such that Aei = fi. Then
ϕ = ψ−1 ◦A is a continuous linear isomorphism.

Finally, since W is linearly homeomorphic to Cn, which is complete, any finite-dimensional subspace of a
normed space is closed. ///

[8.0.3] Remark: The proof for normed spaces works in any topological vector space in which Hahn-Banach
holds. We will see later that Hahn-Banach holds for all locally convex spaces. Nevertheless, as we will see,
this hypothesis is unnecessary, since finite-dimensional subspaces of arbitrary topological vector spaces are
linearly homeomorphic to Cn.
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