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For all [1] our purposes, topological vector spaces are locally convex, in the sense of having a basis at 0
consisting of convex opens.

We prove below that a separating family of seminorms produces a locally convex topology.

Conversely, every locally convex topology is given by separating families of semi-norms: the seminorms are
Minkowski functionals associated to a local basis at 0 of balanced, convex opens.

Giving the topology on a locally convex V by a family of seminorms exhibits V as a dense subspace of a
projective limit of Banach spaces, with the subspace topology. For non-metrizable topologies, necessarily
the indexing set for the limit has no countable cofinal subset.

There are natural topological vector spaces which are not Fréchet, but will be seen later to have reasonable
completeness properties. One type consists of ascending unions of Fréchet spaces, each closed in the next,
called strict colimits of Fréchet spaces, or LF-spaces. Examples: letting

Cn = {(z1, z2, . . . , zn, 0, 0, . . .) : zj ∈ C}

the ascending union C∞ is a strict colimit of these Banach spaces Cn:

C∞ =
⋃
n

Cn = colimn Cn

Similarly, and more obviously relevant to function theory, let

CoN (R) = {f ∈ Co(R) : sptf ⊂ [−N,N ]}

Then the space of compactly-supported continuous functions Coc (R) is a strict colimit of Banach spaces

Coc (R) =
⋃
N

CoN (R) = colimN CoN (R)

The space of L. Schwartz’ test functions D(R) = C∞c (R) on R or Rn is a strict colimit of Fréchet spaces:
with

C∞N (R) = {f ∈ C∞(R) : sptf ⊂ [−N,N ]}

certainly

C∞c (R) =
⋃
N

C∞N (R) = colimN C∞N (R)

Further, we will see natural ascending unions which are not strict in this sense, such as unions of negative-
index Sobolev spaces. We will see later that these characterizations of topologies are correct, in the sense that
the spaces are suitably complete, specifically, quasi-complete. Complications in the notion of completeness
in trans-Fréchet spaces are also discussed later.

[1] There is an exception: to illustrate the fact that not all topological vectorspaces are locally convex, the appendix

briefly considers spaces `p with 0 < p < 1, with topologies not locally convex. This is the only use of these examples.

1



Paul Garrett: Seminorms and locally convex spaces (April 23, 2014)

1. Topologies from seminorms

Topologies given via seminorms on vectorspaces are described. These spaces are invariably locally convex,
in the sense of having a local basis at 0 consisting of convex sets.

Let V be a complex vectorspace. A seminorm ν on V is a real-valued function on V so that
ν(x) ≥ 0 for all x ∈ V (non-negativity)

ν(αx) = |α| · ν(x) for all α ∈ C, x ∈ V (homogeneity)

ν(x+ y) ≤ ν(x) + ν(y) for all x, y ∈ V (triangle inequality)

We allow the situation that ν(x) = 0 yet x 6= 0. A pseudo-metric on a set X is a real-valued function d on
X ×X so that 

d(x, y) ≥ 0 (non-negativity)

d(x, y) = d(y, x) (symmetry)

d(x, x) ≤ d(x, y) + d(x, z) (triangle inequality)

We allow d(x, y) = 0 for x 6= y. The associated pseudo-metric attached to the seminorm ν is

d(x, y) = ν(x− y) = ν(y − x)

This pseudometric is a metric if and only if the seminorm is a norm.

Let {νi : i ∈ I} be a collection of semi-norms on a vectorspace V , with index set I. This family is a separating
family of seminorms when for every 0 6= x ∈ V there is νi so that νi(x) 6= 0.

[1.0.1] Claim: The collection Φ of all finite intersections of sets

Ui,ε = {x ∈ V : νi(x) < ε} (for ε > 0 and i ∈ I)

is a local basis at 0 for a locally convex topology.

Proof: As expected, we intend to define a topological vector space topology on V by saying a set U is open
if and only if for every x ∈ U there is some N ∈ Φ so that

x+N ⊂ U

This would be the induced topology associated to the family of seminorms.

First, that we have a topology does not use the hypothesis that the family of seminorms is separating, although
points will not be closed without the separating property. Arbitrary unions of sets containing ‘neighborhoods’
of the form x+N around each point x have the same property. The empty set and the whole space V are
visibly ‘open’. The least trivial issue is to check that finite intersections of ‘opens’ are ‘open’. Looking at
each point x in a given finite intersection, this amounts to checking that finite intersections of sets in Φ are
again in Φ. But Φ is defined to be the collection of all finite intersections of sets Ui,ε, so this works: we have
closure under finite intersections, and we have a topology on V .

To verify that this topology makes V a topological vectorspace, we must verify the continuity of vector
addition and continuity of scalar multiplication, and closed-ness of points. None of these verifications is
difficult:
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The separating property implies that the intersection of all the sets x + N with N ∈ Φ is just x. Given a
point y ∈ V , for each x 6= y let Ux be an open set containing x but not y. Then

U =
⋃
x 6=y

Ux

is open and has complement {y}, so the singleton set {y} is indeed closed.

To prove continuity of vector addition, it suffices to prove that, given N ∈ Φ and given x, y ∈ V there are
U,U ′ ∈ Φ so that

(x+ U) + (y + U ′) ⊂ x+ y +N

The triangle inequality for semi-norms implies that for a fixed index i and for ε1, ε2 > 0

Ui,ε1 + Ui,ε2 ⊂ Ui,ε1+ε2

Then
(x+ Ui,ε1) + (y + Ui,ε2) ⊂ (x+ y) + Ui,ε1+ε2

Thus, given
N = Ui1,ε1 ∩ . . . ∩ Uin,εn

take
U = U ′ = Ui1,ε1/2 ∩ . . . ∩ Uin,εn/2

proving continuity of vector addition.

For continuity of scalar multiplication, prove that for given α ∈ k, x ∈ V , and N ∈ Φ there are δ > 0 and
U ∈ Φ so that

(α+Bδ) · (x+ U) ⊂ αx+N (with Bδ = {β ∈ k : |α− β| < δ})

Since N is an intersection of the special sub-basis sets Ui,ε, it suffices to consider the case that N is such a
set. Given α and x, for |α′ − α| < δ and for x− x′ ∈ Ui,δ,

νi(αx− α′x′) = νi((α− α′)x+ (α′(x− x′)) ≤ νi((α− α′)x) + νi(α
′(x− x′))

= |α− α′| · νi(x) + |α′| · νi(x− x′) ≤ |α− α′| · νi(x) + (|α|+ δ) · νi(x− x′)

≤ δ · (νi(x) + |α|+ δ)

Thus, to see the joint continuity, take δ > 0 small enough so that

δ · (δ + νi(x) + |α|) < ε

Taking finite intersections presents no further difficulty, taking the corresponding finite intersections of the
sets Bδ and Ui,δ, finishing the demonstration that separating families of seminorms give a structure of
topological vectorspace.

Last, check that finite intersections of the sets Ui,ε are convex. Since intersections of convex sets are convex,
it suffices to check that the sets Ui,ε themselves are convex, which follows from the homogeneity and the
triangle inequality: with 0 ≤ t ≤ 1 and x, y ∈ Ui,ε,

νi(tx+ (1− t)y) ≤ νi(tx) + νi((1− t)y) = tνi(x) + (1− t)νi(y) ≤ tε+ (1− t)ε = ε

Thus, the set Ui,ε is convex. ///
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2. Seminorms from topologies: Minkowski functionals

It takes a bit more work to go in the opposite direction, that is, to see that every locally convex topology is
given by a family of seminorms.

Let U be a convex open set containing 0 in a topological vectorspace V . Every open neighborhood of 0
contains a balanced neighborhood of 0, so shrink U if necessary so it is balanced, that is, αv ∈ U for v ∈ U
and |α| ≤ 1.

The Minkowski functional or gauge νU associated to U is

νU (v) = inf{t ≥ 0 : v ∈ tU}

[2.0.1] Claim: The Minkowski functional νU associated to a balanced convex open neighborhood U of 0 in
a topological vectorspace V is a seminorm on V , and is continuous in the topology on V .

Proof: The argument is as expected:

First, by continuity of scalar multiplication, every neighborhood U of 0 is absorbing, in the sense that every
v ∈ V lies inside tU for large enough |t|. Thus, the set over which we take the infimum to define the
Minkowski functional is non-empty, so the infimum exists.

Let α be a scalar, and let α = sµ with s = |α| and |µ| = 1. The balanced-ness of U implies the balanced-ness
of tU for any t ≥ 0, so for v ∈ tU also

αv ∈ αtU = sµtU = stU

From this,
{t ≥ 0 : αv ∈ αU} = |α| · {t ≥ 0 : αv ∈ tU}

from which follows the homogeneity property required of a seminorm:

νU (αv) = |α| · νU (v) (for scalar α)

To prove the triangle inequality use the convexity. For v, w ∈ V and s, t > 0 such that v ∈ sU and w ∈ tU ,

v + w ∈ sU + tU = {su+ tu′ : u, u′ ∈ U}

By convexity,

su+ tu′ = (s+ t) ·
( s

s+ t
· u+

t

s+ t
· u′
)
∈ (s+ t) · U

Thus,

νU (v + w) = inf{r ≥ 0 : v + w ∈ rU} ≤ inf{r ≥ 0 : v ∈ rU}+ inf{r ≥ 0 : w ∈ rU} = νU (v) + νU (w)

Thus, the Minkowski functional νU attached to balanced, convex U is a continuous seminorm. ///

[2.0.2] Theorem: The topology of a locally convex topological vectorspace V is given by the collection
of seminorms obtained as Minkowski functionals νU associated to a local basis at 0 consisting of convex,
balanced opens.

Proof: The proof is straightforward. With or without local convexity, every neighborhood of 0 contains
a balanced neighborhood of 0. Thus, a locally convex topological vectorspace has a local basis X at 0 of
balanced convex open sets.
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We claim that every open U ∈ X can be recovered from the corresponding seminorm νU by

U = {v ∈ V : νU (v) < 1}
Indeed, for v ∈ U , the continuity of scalar multiplication gives δ > 0 and a neighborhood N of v such that
z · v − 1 · v ∈ U for |1− z| < δ. Thus, v ∈ (1 + δ)−1 · U , so

νU (v) = inf{t ≥ 0 : v ∈ t · U} ≤ 1

1 + δ
< 1

On the other hand, for νU (v) < 1, there is t < 1 such that v ∈ tU ⊂ U , since U is convex and contains 0.
Thus, the seminorm topology is at least as fine as the original.

Oppositely, the same argument shows that every seminorm local basis open

{v ∈ V : νU (v) < t}
is simply tU . Thus, the original topology is at least as fine as the seminorm topology.

///

[2.0.3] Remark: The above collection of seminorms is extravagantly large, since all convex balanced
neighborhoods of 0 are used. Of course, there are relationships among these neighborhoods and the associated
Minkowski functionals.

3. Strong dual topologies and colimits

The equality of the colimit topology on H−∞(Tn), with limitands H−s(Tn) with −s ≤ 0 given their Hilbert
space topologies, with the strong dual topology on H−∞(Tn) as dual to H∞(Tn), is inessential to proof of
existence of tensor products and the Schwartz kernel theorem. Nevertheless, it is comforting to verify that
this topology on H−∞(Tn) is the same as that described in another fashion, in terms of seminorms.

The instance of the Schwartz Kernel Theorem above refers to H∞(Tn)∗ = H−∞(Tn), the colimit/ascending
union of H−s(Tn) = Hs(Tn)∗ for s ≥ 0. The strongest reasonable topology on each negative-index Levi-
Sobolev space H−s(Tn) is its Hilbert-space topology. As a vector space without topology, H−∞(Tn) =⋃
s≥0H

−s(Tn). This ascending union is a colimit, which gives H−∞(Tn) a topology, naturally depending on
the topologies of the limitands.

In fact, the argument below applies to limits of Banach spaces and colimits of their duals.

[3.1] Duals of limits of Banach spaces The topology on a limit

V
'' $$ ""

. . . // V2
ϕ2 // V1

ϕ1 // V0

of Banach spaces Vi is given by the norms | · |i on Vi, composed with the maps σi : V → Vi, giving seminorms
pi = | · |i ◦ σi. A collection of seminorms specifies a topology by giving a sub-basis for V at 0 consisting of
opens of the form

U = {v ∈ V : pi(v) < ε}

We recall the proof that linear maps λ : V → X from V = limi Vi of Banach spaces Vi to a normed space X
necessarily factor through some limitand:

V

λ   A
AA

AA
AA

A
''

. . . // Vi

~~}
}
}
}

ϕi // . . .

X
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Proof: Without loss of generality, replace each Vi by the closure of the image of Vi in it. Continuity of λ is
that, given ε > 0, there is an index i and a δ > 0 such that

λ
(
{v ∈ V : pi(v) < δ}

)
⊂ {x ∈ X : |x|

X
< ε}

Then, for any ε′ > 0,

λ
(
{v ∈ V : pi(v) < δ · ε

′

ε
}
)
⊂ {x ∈ X : |x|

X
< ε′}

Thus, λ extends by continuity to the closure of σiV in Vi, and gives a continuous map Vi → X. ///

Thus, the dual of a limit of Banach spaces Vi is a colimit

V ∗0
ϕ∗

1 //
$$

V ∗1
ϕ∗

1 //
&&

V ∗2 //
**

. . . colimV ∗i

The duals V ∗i and the colimit are unambiguous as vector spaces. The topology on the colimit depends on
the choice of topology on the duals V ∗i .

One reason to consider limits of Banach spaces Vi is the natural Banach-space structure on the dual. These
are examples of strong dual topologies. In general, the strong dual topology on the dual V ∗ of a locally
convex topological vector space V is given by seminorms [2]

pE(λ) = sup
v∈E
|λv| (E a bounded, convex, balanced neighborhood of 0 in V )

This gives a sub-basis at 0 for the topology on V ∗ consisting of sets

{λ ∈ V ∗ : pE(λ) < ε} (for E bounded, ε > 0)

where a bounded set E in a general topological vector space V is characterized by the property that, for
every open neighborhood U of 0 in V , there is to such that tU ⊃ E for all t ≥ to.

Let V = limVi be a countable limit of Banach spaces, where all transition maps Vi → Vi−1 are injections.
We claim that the (locally convex) colimit colimi

(
V ∗i
)

of the strong duals V ∗i gives the strong dual topology
on the dual V ∗ of the limit V = limVi.

Proof: Since the transition maps Vi → Vi−1 are injections, as a set the limit V is the nested intersection of
the Vi, and we identify Vi as a subset of Vi−1. Further, the dual V ∗ is identifiable with the ascending union
of the duals V ∗i , regardless of topology.

The first point is to show that every bounded subset of V is contained in a bounded subset E expressible as
a nested intersection of bounded subsets Ei of Vi. To see this, first note that the topology on V is given by
the collection of (semi-) norms | · |i on the individual Banach spaces Vi. A set E ⊂ is bounded if and only
if, for every index i, there is a radius ri such that E is inside the ball Bi(ri) of radius ri in Vi. We may as
well replace these balls by the intersection of all the lower-(or-equal-)index balls:

Ei =
⋂
j≥i

Bj(rj)

The set Ei is bounded in Vi, Ei ⊂ Ei−1, and E is their nested intersection.

Now consider the linear functionals. On one hand, a given λ : V → C factors through some λi ∈ V ∗i , and
λE being inside the ε-ball Bε in C is implied by λiEi ⊂ Bε for some i. On the other hand, for λE ⊂ Bε,

[2]
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we claim λEi ⊂ Bε for large-enough i. Indeed, λEi is a balanced, bounded, convex subset of C, so is a disk
(either open or closed) of radius ri. Since the intersection of the λEi is inside Bε, necessarily lim ri ≤ ε, with
strict inequality if the disks are closed. Thus, there is io such that ri ≤ ε for i ≥ io, with ri < ε for close
disks. Thus, there is io such that λEi ⊂ Bε for i ≥ io.

That is, the strong dual topology on V ∗ =
⋃
i V
∗
i is the colimit of the strong dual (Banach) topologies on

the V ∗i . ///

[3.1.1] Remark: The locally convex colimit of the Hilbert spaces H−s(Tn) is H−∞(Tn), especially after
verifying that the colimit topology from the strong duals H−s(Tn) is the strong dual topology on H+∞(Tn)∗.

4. Appendix: Non-locally-convex spaces `p with 0 < p < 1

With 0 < p < 1, the topological vector space

`p = {{xi ∈ C} :
∑
i

|xi|p < ∞}

is not locally convex with the topology given by the metric d(x, y) = |x− y|p coming from

|x|p =
∑
i

|xi|p (for 0 < p < 1 no pth root!)

It is complete with respect to this metric. Note that |x|p fails to be a norm by failing to be homogeneous of
degree 1. The failure of local convexity is as follows.

Local convexity would require that the convex hull of the δ-ball at 0 be contained in some r-ball. That is,
local convexity would require that, given δ, there is some r such that∣∣∣ 1

n
· (δ, 0, . . .) + . . .+

1

n
· (0, . . . , 0, δ︸ ︷︷ ︸

n

, 0, . . .)
∣∣∣
p

=
( δ
n

)p
+ . . .+

( δ
n

)p
< r (for n = 1, 2, 3, . . .)

That is, local convexity would require that, given δ, there is r such that

n1−p <
r

δp
(for n = 1, 2, 3, . . .)

This is impossible because 0 < p < 1. ///

For contrast, to prove the triangle inequality for the alleged metric on `p with 0 < p < 1, it suffices to prove
that

(x+ y)p < xp + yp (for 0 < p < 1 and x, y ≥ 0)

To this end, take x ≥ y. By the mean value theorem,

(x+ y)p ≤ xp + pξp−1y (for some x ≤ ξ ≤ x+ y)

and
xp + pξp−1y ≤ xp + pxp−1y ≤ xp + pyp−1y = xp + pyp

≤ xp + yp (since p− 1 < 0 and ξ ≥ x ≥ y)

This proves the triangle inequality for 0 < p < 1. ///
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