Hahn-Banach theorems

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/

1. Continuous linear functionals
2. Dominated extension theorem for real spaces
3. Separation theorem for real spaces
4. Complex scalars
5. Corollaries

Convex sets can be separated by linear functionals. Second, continuous linear functionals on subspaces of a locally convex[1] topological vectorspace have continuous extensions to the whole space.

These assertions are proven first for real vectorspaces. The complex-linear versions are corollaries.

An important corollary is that in locally convex topological vectorspaces continuous linear functionals separate points, meaning that for $x \neq y$ there is a continuous linear functional λ so that $\lambda(x) \neq \lambda(y)$.

1. Continuous Linear Functionals

Let k be either \mathbb{R} or \mathbb{C}, and let V be a k-vectorspace, without any assumptions about topologies for the moment. A k-linear k-valued function on V is called a linear functional.

The space of all continuous k-linear k-valued functionals on V is denoted by V^*, suppressing reference to the field k.

A linear functional λ on V is said to be bounded when there is a neighborhood U of 0 in V and constant c so that $|\lambda(x)| \leq c$ for $x \in U$, where $|| \cdot ||$ is the usual absolute value on k. The following proposition is the general topological vectorspace analogue of the corresponding assertion for Banach spaces, in which boundedness has a different sense.

[1.0.1] Proposition: The following three conditions on a linear functional λ on a topological vectorspace V over k are equivalent:

- λ is continuous.
- λ is continuous at 0
- λ is bounded

Proof: The first assertion certainly implies the second. Assume the second. Then, given $\varepsilon > 0$, there is a neighborhood U of 0 in V so that $|\lambda| \leq \varepsilon$ on U. This proves boundedness. Finally, suppose that $|\lambda(x)| \leq c$ on a neighborhood U of 0. Then given $x \in V$ and given $\varepsilon > 0$, we claim that for

$$y \in x + \frac{\varepsilon}{2c} U$$

we have

$$|\lambda(x) - \lambda(y)| < \varepsilon$$

Indeed, letting $x - y = \frac{\varepsilon}{2c} u$ with $u \in U$, we have

$$|\lambda(x) - \lambda(y)| = \frac{\varepsilon}{2c} |\lambda(u)| \leq \frac{\varepsilon}{2c} \cdot c = \frac{\varepsilon}{2} < \varepsilon$$

This proves the proposition.

[1] A topological vectorspace is locally convex when it has a local basis at 0 consisting of convex open sets. We are almost exclusively interested in locally convex spaces, and the hypothesis of local convexity is easily come-by.
2. Dominated Extension Theorem

In this section, all vectorspaces are real.

The result here involves only elementary algebra and inequalities (apart from transfinite induction) and is the heart of the matter. There is no direct discussion of topological vectorspaces here. The goal here is to extend a linear function while maintaining a comparison to another function (denoted \(p \) below). Thus, for this section we need not suppose that the vectorspaces involved are topological vectorspaces.

Let \(V \) be a real vectorspace, without any assumption about topologies. Let \(p : V \to \mathbb{R} \) be a non-negative real-valued function on \(V \) so that

\[
p(tv) = t \cdot p(v) \quad \text{(for } t \geq 0) \quad \text{(positive-homogeneity)}
\]

\[
p(v + w) \leq p(v) + p(w) \quad \text{(triangle inequality)}
\]

(Thus, \(p \) is not quite a semi-norm, lacking any description of what happens to \(p(tv) \) for \(t < 0 \)).

[2.0.1] Theorem: Let \(\lambda \) be a real-linear function on a real vector subspace \(W \) of \(V \), so that

\[
\lambda(w) \leq p(w) \quad \text{(for all } w \in W)
\]

There is an extension of \(\lambda \) to a real-linear function \(\Lambda \) on all of \(V \), so that

\[
-p(-v) \leq \Lambda(v) \leq p(v)
\]

for all \(v \in V \).

Proof: The key is to extend the functional one step. That is, for \(v_o \in V \), attempt to extend \(\lambda' \) of \(\lambda \) to \(W + \mathbb{R}v_o \) by

\[
\lambda'(w + tv_o) = \lambda(w) + ct
\]

and examine the resulting conditions on \(c \).

For all \(w, w' \in W \)

\[
\lambda(w) - p(w - v_o) = \lambda(w + w') - \lambda(w') - p(w - v_o)
\]

\[
\leq p(w + w') - \lambda(w') - p(w - v_o) = p(w - v_o + w' + v_o) - \lambda(w') - p(w - v_o)
\]

\[
\leq p(w - v_o) + p(w' + v_o) - \lambda(w') - p(w - v_o) = p(w' + v_o) - \lambda(w')
\]

That is,

\[
\lambda(w) - p(w - v_o) \leq p(w' + v_o) - \lambda(w') \quad \text{(for all } w, w' \in W)
\]

Let \(\sigma \) be the sup of all the left-hand sides as \(w \) ranges over \(W \). Since the right-hand side is finite, this sup is finite. With \(\mu \) the inf of the right-hand side as \(w' \) ranges over \(W \),

\[
\lambda(w) - p(w - v_o) \leq \sigma \leq \mu \leq p(w' + v_o) - \lambda(w')
\]

Choose \(c \) to be any real number so that

\[
\sigma \leq c \leq \mu
\]

and define

\[
\lambda'(w + tv_o) = \lambda(w) + tc
\]
To compare with \(p \) is easy: in the inequality
\[
\lambda(w) - p(w - v_o) \leq \sigma
\]
replace \(w \) by \(w/t \) with \(t > 0 \), multiply by \(t \) and invoke the positive-homogeneity to obtain
\[
\lambda(w) - p(w - tv_o) \leq t \sigma
\]
from which
\[
\lambda'(w - tv_o) = \lambda(w) - tc \leq \lambda(w) - t \sigma \leq p(w - tv_o)
\]
Likewise, from
\[
\mu \leq p(w + v_o) - \lambda(w)
\]
a similar trick produces
\[
\lambda'(w + tv_o) = \lambda(w) + tc \leq \lambda(w) + t \mu \leq p(w + tv_o)
\]
for \(t > 0 \), the other half of the desired inequality.

Thus, for all \(v \in W + Rv_o \) we have
\[
\lambda'(v) \leq p(v)
\]
Using the linearity of \(\lambda' \),
\[
\lambda'(v) = -\lambda'(-v) \geq -p(-v)
\]
which gives the bottom half of the comparison of \(\lambda' \) and \(p \).

To extend to a functional on the whole space dominated by \(p \) is an exercise in transfinite induction, executed as follows. Let \(\mathcal{X} \) be the collection of all pairs \((X, \mu)\), where \(X \) is a subspace of \(V \) (containing \(W \)), and where \(\mu \) is real-linear real-valued function on \(X \) so that \(\mu \) restricted to \(W \) is \(\lambda \), and so that
\[
-p(-x) \leq \mu(x) \leq p(x) \quad \text{(for all } x \in X)\]

Order these by writing \((X, \mu) \leq (Y, \nu)\) when \(X \subset Y \) and \(\nu|_X = \mu \). By the Hausdorff Maximalit Principle, there is a maximal totally ordered subset \(\mathcal{Y} \) of \(\mathcal{X} \). Let
\[
V' = \bigcup_{(X, \mu) \in \mathcal{Y}} X
\]
be the ascending union of all the subspaces in \(\mathcal{Y} \). Define a linear functional \(\lambda' \) on this union as follows: for \(v \in V' \), take any \(X \) so that \((X, \mu) \in \mathcal{Y} \) and \(v \in X \) and define
\[
\lambda'(v) = \mu(v)
\]
The total ordering on \(\mathcal{Y} \) makes the choice of \((X, \mu)\) not affect the definition of \(\lambda' \).

It remains to check that \(V' \) is the whole space \(V \). If not, the first part of the proof would create an extension to a properly larger subspace, contradicting the maximality. \(/\!\!/\)

3. Separation Theorem

All vectorspaces are real.

Suppose that \(V \) is a locally convex topological vectorspace, meaning that there is a local basis at \(0 \in V \) consisting of convex sets. Invoking the dominated extension result just above we see that open convex sets can be ‘separated’ from convex sets:
[3.0.1] **Theorem:** For a non-empty convex open subset \(X \) of a locally convex topological vectorspace \(V \), and a non-empty convex set \(Y \) in \(V \) with \(X \cap Y = \emptyset \), there is a continuous real-linear real-valued functional \(\lambda \) on \(V \) and a constant \(c \) so that

\[
\lambda(x) < c \leq \lambda(y) \quad \text{(for all } x \in X \text{ and } y \in Y)\]

Proof: Fix \(x_o \in X \) and \(y_o \in Y \). Since \(X \) is open, \(X - x_o \) is open, and thus

\[
U = (X - x_o) - (Y - y_o) = \{(x - x_o) - (y - y_o) : x \in X, \ y \in Y\}
\]

is open. Further, since \(x_o \in X \) and \(y_o \in Y \), \(U \) contains 0. Since \(X, Y \) are convex, \(U \) is convex. Shrink \(U \) if necessary to assume that \(U \) is balanced.

Define the Minkowski functional \(p = p_U \) attached to \(U \) by

\[
p(v) = \inf\{t > 0 : v \in tU\}
\]

The convexity assures that this function \(p \) has the positive-homogeneity and triangle-inequality properties of the auxiliary functional \(p \) mentioned in the dominated extension theorem above.

Let \(z_o = -x_o + y_o \). Since \(X \cap Y = \emptyset \), \(z_o \notin U \), so \(p(z_o) \geq 1 \). Define a linear functional \(\lambda \) on \(\mathbb{R}z_o \) by

\[
\lambda(tz_o) = t
\]

Check that \(\lambda \) is dominated by \(p \) in the sense of the previous section:

\[
\lambda(tz_o) = t \leq t \cdot p(z_o) = p(tz_o) \quad \text{(for } t \geq 0)\]

while

\[
\lambda(tz_o) = t < 0 \leq p(tz_o) \quad \text{(for } t < 0)\]

Thus,

\[
\lambda(tz_o) \leq p(tz_o) \quad \text{(for all real } t)\]

Thus, \(\lambda \) extends to a real-linear real-valued functional \(\Lambda \) on \(V \), still so that

\[
-p(-v) \leq \Lambda(v) \leq p(v) \quad \text{(for all } v \in V)\]

From the definition of \(p \), since \(U \) is balanced, \(|\Lambda| \leq 1 \) on \(U \). Thus, on \(\frac{1}{2}U \) we have \(|\Lambda| < \varepsilon \). That is, the linear functional \(\Lambda \) is bounded, so is continuous at 0, so is continuous on \(V \).

For arbitrary \(x \in X \) and \(y \in Y \),

\[
\Lambda x - \Lambda y + 1 = \Lambda(x - y + z_o) \leq p(x - y + z_o) < 1
\]

since \(x - y + z_o \in U \). Thus, for all such \(x, y \), we have

\[
\Lambda x - \Lambda y < 0
\]

Therefore, \(\Lambda(X) \) and \(\Lambda(Y) \) are disjoint convex subsets of \(\mathbb{R} \). Since \(\Lambda \) is not the zero functional, it is surjective to \(\mathbb{R} \), and so is an open map. Thus, \(\Lambda(X) \) is open, and

\[
\Lambda(X) < \sup \Lambda(X) \leq \Lambda(Y)
\]

as desired.

///
4. Complex scalars

The two theorems above, for real vectorspaces, have analogues in the complex case, which are really just corollaries of the real cases.

Let \(V \) be a complex vectorspace. Given a complex-linear complex-valued functional \(\lambda \) on \(V \), let its real part be

\[
u(v) = \text{Re}\lambda(v) = \frac{\lambda(v) + \overline{\lambda(v)}}{2}\]

where the overbar denotes complex conjugation. On the other hand, given a real-linear real-valued functional \(u \) on \(V \), its complexification \(Cu \) is

\[
Cu(x) = u(x) - iu(ix)
\]

where \(i = \sqrt{-1} \).

[4.0.1] Proposition: For a real-linear functional \(u \) on the complex vectorspace \(V \), the complexification \(Cu \) is a complex-linear functional so that

\[
\text{Re}(Cu) = u
\]

and for a complex-linear functional \(\lambda \)

\[
C(\text{Re} \lambda) = \lambda
\]

(The proof is straightforward computation).

[4.0.2] Theorem: Let \(p \) be a seminorm on the complex vectorspace \(V \). Let \(\lambda \) be a complex-linear function on a complex vector subspace \(W \) of \(V \), so that

\[
|\lambda(w)| \leq p(w) \quad (\text{for all } w \in W)
\]

Then there is an extension of \(\lambda \) to a complex-linear function \(\Lambda \) on all of \(V \), so that

\[
|\Lambda(v)| \leq p(v) \quad (\text{for all } v \in V)
\]

Proof: Certainly if \(|\lambda| \leq p \) then \(|\text{Re} \lambda| \leq p \). By the theorem for real-linear functionals, there is an extension \(u \) of \(\text{Re} \lambda \) to a real-linear functional so that still \(|u| \leq p \). Let

\[
\Lambda = Cu
\]

In light of the proposition, it remains to show that \(|\Lambda| \leq p \).

To this end, given \(v \in V \), let \(\mu \) be a complex number of absolute value 1 so that

\[
|\Lambda(v)| = \mu \Lambda(v)
\]

Then

\[
|\Lambda(v)| = \mu \Lambda(v) = \Lambda(\mu v) = \text{Re} \Lambda(\mu v) \leq p(\mu v) = p(v)
\]

where we use the seminorm property of \(p \). Thus, the complex-linear functional made by complexifying the real-linear extension of the real part of \(\lambda \) satisfies the desired bound.

[4.0.3] Theorem: Let \(X \) be a non-empty convex open subset of a locally convex topological vectorspace \(V \), and let \(Y \) be an arbitrary non-empty convex set in \(V \) so that \(X \cap Y = \emptyset \). Then there is a continuous complex-linear complex-valued functional \(\lambda \) on \(V \) and a constant \(c \) so that

\[
\text{Re} \lambda(x) < c \leq \text{Re} \lambda(y) \quad (\text{for all } x \in X \text{ and } y \in Y)
\]
Proof: Invoke the real-linear version of the theorem to make a real-linear functional u so that
\[u(x) < c \leq u(y) \]
for all $x \in X$ and $y \in Y$. By the proposition, u is the real part of its own complexification. ///

5. Corollaries

The corollaries make sense for both real or complex scalars.

[5.0.1] Corollary: Let V be a locally convex topological vectorspace. Let K and C be disjoint sets, where K is a compact convex non-empty subset of V, and C is a closed convex subset of V. Then there is a continuous linear functional λ on V and there are real constants $c_1 < c_2$ so that
\[\Re \lambda(x) \leq c_1 < c_2 \leq \Re \lambda(y) \quad \text{(for all } x \in K \text{ and } y \in C) \]

Proof: Take a small-enough convex neighborhood U of 0 in V so that $(K + U) \cap C = \emptyset$. Apply the separation theorem to $X = K + U$ and $Y = C$. The constant c_2 can be taken to be $c_2 = \sup \Re \lambda(K + U)$. Since $\Re \lambda(K)$ is a compact subset of $\Re \lambda(K + U)$, its sup c_1 is strictly less than c_2. ///

[5.0.2] Corollary: Let V be a locally convex topological vectorspace, W a subspace, and $v_o \in V$. Let \overline{W} denote the topological closure of W. Then $v_o \notin \overline{W}$ if and only if there is a continuous linear functional λ on V so that $\lambda(W) = 0$ while $\lambda(v_o) = 1$.

Proof: On one hand, if v_o lies in the closure of W, then any continuous function which is 0 on W must be 0 on v_o, as well.

On the other hand, suppose that v_o does not lie in the closure of W. Then apply the previous corollary with $K = \{v_o\}$ and $C = \overline{W}$. We find that
\[\Re \lambda(\{v_o\}) \cap \Re \lambda(\overline{W}) = \emptyset \]
Since $\Re \lambda(\overline{W})$ is a vector subspace of the real line, and is not the whole real line, it is just $\{0\}$, and $\Re \lambda(v_o) \neq 0$. Divide λ by the constant $\Re \lambda(v_o)$ to obtain a continuous linear functional zero on W but 1 on v_o.

///

[5.0.3] Corollary: Let V be a locally convex topological (real) vectorspace. Let λ be a continuous linear functional on a subspace W of V. Then there is a continuous linear functional Λ on V extending λ.

Proof: Without loss of generality, take $\lambda \neq 0$. Let W_o be the kernel of λ (on W), and pick $w_1 \in W$ so that $\lambda w_1 = 1$. Evidently w_1 is not in the closure of W_o, so there is Λ on the whole space V so that $\Lambda|_{W_o} = 0$ and $\Lambda w_1 = 1$. It is easy to check that this Λ is an extension of λ.

///

[5.0.4] Corollary: Let V be a locally convex topological vectorspace. Given two distinct vectors $x \neq y$ in V, there is a continuous linear functional λ on V so that $\lambda(x) \neq \lambda(y)$

Proof: The set $\{x\}$ is compact convex non-empty, and the set $\{y\}$ is closed convex non-empty, so we can apply a corollary just above.

///