(July 2, 2013)

Distributions supported at 0

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/

[This document is http://www.math.umn.edu/~garrett/m/fun/notes_2012-13/09b_distns_at_zero.pdf]

[0.0.1] Theorem: A distribution u with support {0} is a (finite) linear combination of Dirac's δ and its derivatives.

Recall the notion of *support* of a distribution.

[0.0.2] Definition: The support of a distribution u is the complement of the union of all open sets $U \in \mathbb{R}^n$ such that

$$u(f) = 0$$
 (for $f \in \mathcal{D}_K$ with compact $K \subset U$)

Proof: Since the space \mathcal{D} of test functions on \mathbb{R}^n is $\mathcal{D} = \operatorname{colim}_K \mathcal{D}_K$, it suffices to classify u in \mathcal{D}_K^* with support $\{0\}$.

We have seen that a continuous linear map T from a *limit* of Banach spaces (such as \mathcal{D}_K) to a normed space (such as \mathbb{C}) factors through a limitand. Thus, there is an *order* $k \geq 0$ such that u factors through

$$C_K^k = \{ f \in C^k(K) : f^{(\alpha)} \text{ vanishes on } \partial K \text{ for all } \alpha \text{ with } |\alpha| \le k \}$$

We need an auxiliary gadget. Fix a smooth compactly-supported function ψ identically 1 on a neighborhood of 0, bounded between 0 and 1, and (necessarily) identically 0 outside some (larger) neighborhood of 0. For $\varepsilon > 0$ let

$$\psi_{\varepsilon}(x) = \psi(\varepsilon^{-1}x)$$

Since the support of u is just $\{0\}$, for all $\varepsilon > 0$ and for all $f \in C_c^{\infty}(\mathbb{R}^n)$ the support of $f - \psi_{\varepsilon} \cdot f$ does not include 0, so

$$u(\psi_{\varepsilon} \cdot f) = u(f)$$

Thus, for some constant C (depending on k and K, but not on f)

$$|\psi_{\varepsilon}f|_{k} = \sup_{x \in K} \sup_{|\alpha| \le k} |(\psi_{\varepsilon}f)^{(\alpha)}(x)| \le C \cdot \sup_{|i| \le k} \sup_{x} \sup_{0 \le j \le i} \varepsilon^{-|j|} |\psi^{(j)}(\varepsilon^{-1}x) f^{(i-j)}(x)|$$

For f vanishing to order k at 0, that is, $f^{(\alpha)}(0) = 0$ for all multi-indices α with $|\alpha| \leq k$, on a fixed neighborhood of 0, by a Taylor-Maclaurin expansion, for some constant C

$$|f(x)| \leq C \cdot |x|^{k+1}$$

and, generally, for α^{th} derivatives with $|\alpha| \leq k$,

$$|f^{(\alpha)}(x)| \leq C \cdot |x|^{k+1-|\alpha|}$$

For some constant C

$$|\psi_{\varepsilon}f|_{k} \leq C \cdot \sup_{|i| \leq k} \sup_{0 \leq j \leq i} \varepsilon^{-|j|} \cdot \varepsilon^{k+1-|i|+|j|} \leq C \cdot \varepsilon^{k+1-|i|} \leq C \cdot \varepsilon^{k+1-k} = C \cdot \varepsilon$$

Thus, for all $\varepsilon > 0$, for smooth f vanishing to order k at 0,

$$|u(f)| = |u(\psi_{\varepsilon}f)| \le C \cdot \varepsilon$$

Thus, u(f) = 0 for such f.

That is, u is 0 on the intersection of the kernels of δ and its derivatives $\delta^{(\alpha)}$ for $|\alpha| \leq k$. Generally,

[0.0.3] Proposition: A continuous linear function $\lambda \in V^*$ vanishing on the intersection of the kernels of a finite collection $\lambda_1, \ldots, \lambda_n$ of continuous linear functionals on V is a linear combination of the λ_i .

Proof: The linear map

$$q: V \longrightarrow \mathbb{C}^n$$
 by $v \longrightarrow (\lambda_1 v, \ldots, \lambda_n v)$

is *continuous* since each λ_i is continuous, and λ factors through q, as $\lambda = L \circ q$ for some linear functional L on \mathbb{C}^n . We know all the linear functionals on \mathbb{C}^n , namely, L is of the form

$$L(z_1, \ldots, z_n) = c_1 z_1 + \ldots + c_n z_n \qquad \text{(for some constants } c_i\text{)}$$

Thus,

$$\lambda(v) = (L \circ q)(v) = L(\lambda_1 v, \dots, \lambda_n v) = c_1 \lambda_1(v) + \dots + c_n \lambda_n(v)$$

expressing λ as a linear combination of the λ_i .

[0.0.4] Remark: The following lemma resolves a potential confusion.

[0.0.5] Lemma: For compact K inside the *complement* of the support of a distribution u,

$$u(f) = 0 \qquad (\text{for } f \in \mathcal{D}_K)$$

Proof: This is plausible, but not utterly trivial. Let $\{U_i : i \in I\}$ be open sets such that for compact K' inside any single U_i and $f \in \mathcal{D}_{K'}$ we have u(f) = 0. Let $\{\psi_i : i \in I\}$ be a smooth locally finite partition of $unity^{[1]}$ subordinate to $\{U_i : i \in I\}$. Take $f \in \mathcal{D}_{K'}$ for K' compact inside $U = \bigcup_i U_i$. Then

$$f = f \cdot 1 = \sum_i f \cdot \psi_i$$

and the sum is *finite*. Then

$$u(f) = u(\sum_{i} f \cdot \psi_{i}) = \sum_{i} u(f \cdot \psi_{i}) = \sum_{i} 0 = 0$$

(The fact that the sum is finite allows interchange of summation and evaluation.)

///

///

^[1] That is, the functions ψ_i are smooth, take values between 0 and 1, sum to 1 at all points, and on any compact there are only finitely-many which are non-zero. The existence of such partitions of unity is not completely trivial to prove.