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The Fourier transform of f ∈ L1(R) is [1]

f̂(ξ) =

∫
R
e−2πiξx · f(x) dx

Since f ∈ L1(R), the integral converges absolutely, and uniformly in ξ ∈ R. Similarly, on Rn, with the usual
inner product ξ · x =

∑n
j=1 ξjxj ,

f̂(ξ) =

∫
Rn
e−2πiξ·x · f(x) dx

An immediately interesting feature of Fourier transform is that differentiation is converted to multiplication:
at first heuristically, but rigorously proven below, imagining that we can integrate by parts,

∂f

∂xj
(̂ξ) =

∫
Rn
e−2πiξ·x · ∂

∂xj
f(x) dx =

∫
Rn

∂

∂xj
e−2πiξ·x · f(x) dx =

∫
Rn

(−2πiξj)e
−2πiξ·x · f(x) dx

= (−2πiξj)

∫
Rn

(−2πiξj)e
−2πiξ·x · f(x) dx = (−2πiξj)f̂(ξ)

Thus, the Laplacian ∆ =
∑
j
∂2

∂x2
j

is converted to multiplication by (−2πi)2 ·r2 where r2 = ξ21 +. . .+ξ2n. Thus,

to solve a differential equation such as (∆− λ)u = f , apply Fourier transform to obtain (−4π2r2 − λ)û = f̂ .
Divide through by (−4π2r2 − λ) to obtain

û =
f̂

−4π2r2 − λ

To recover u from û, there is Fourier inversion (proven below):

u(x) =

∫
Rn
e2πiξ·x û(ξ) dξ

There are obvious issues about the integration by parts, the convergence of the relevant integrals, and the
inversion formula. In fact, to extend the Fourier transform to L2(Rn), the integral definition of the Fourier
transform must also be extended to a situation where the literal integral does not converge. Similarly, a bit
later, the Fourier transform on the dual of the Schwartz space S (Rn) (below) is only defined by either an
extension by continuity or by a duality relationship.

[1] There are other choices of normalizations, that put the 2π in other locations than the exponent, but the differences

are inconsequential, so we pick one normalization and use it consistently throughout.
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1. Example computations

It is useful and necessary to have a stock of explicitly evaluated Fourier transforms, especially on R. In
many cases, it is much less obvious how to go in the opposite direction, so Fourier inversion (below) has
non-trivial content.

[1.1] Characteristic functions of finite intervals It is easy to compute the Fourier transform of the
characteristic function ch[a,b] of an interval [a, b]: at least for ξ 6= 0, but then extending by continuity (see
the Riemann-Lebesgue Lemma below),∫

R
ch[a,b] e

−2πiξx dx =

∫ b

a

e−2πiξx dx =
e−2πiξb − e−2πiξa

−2πiξ

In particular, for a symmetrical interval [−w,w],∫
R

ch[−w,w] e
−2πiξx dx =

e2πiξw − e−2πiξw

2πiξ
=

sin 2πwξ

πξ
= 2w · sin 2πwξ

2πwξ
= 2w · sinc(2πwξ)

where the (naively-normalized) sinc function [2] is sinc(x) = sin x
x . Anticipating Fourier inversion (below),

although sinc(x) is not in L1(R), it is in L2(R), and its Fourier transform is evidently a characteristic function
of an interval. This is not obvious.

[1.2] Tent functions Let f(x) be a piecewise-linear, continuous tent function of width 2w and height h,
symmetrically placed about the origin:

f(x) =


0 (for x ≤ −w)

h− h|x|
w

(for |x| ≤ w)

0 (for x ≥ w)

Breaking the integral into two pieces and integrating by parts twice, for ξ 6= 0 but extending by continuity
(see below), we find that

f̂(ξ) =
h

π2w

( sinπwξ

ξ

)2

[1.3] Gaussians With our normalization of the Fourier transform, the best Gaussian is f(x) = e−πx
2

,
because ∫

R
e−2πiξx e−πx

2

dx = e−πiξ
2

The sanest proof of this uses contour shifting from complex analysis:∫
R
e−2πiξx e−πx

2

dx =

∫
R
e−π(x−iξ)

2−πξ2 dx = e−πξ
2

∫
R
e−π(x−iξ)

2

dx = e−πξ
2

∫ −iξ+∞
−iξ−∞

e−πx dx

= e−πξ
2

∫ +∞

−∞
e−πx dx = e−πξ

2

· 1 = e−πξ
2

[2] According to http://en.wikipedia.org/wiki/Sinc function, the name is a contraction of the Latin name sinus

cardinalis, bestowed on this function by P. Woodard and I. Davies, Information theory and inverse probability in

telecommunication, Proc. IEEE-part III: radio and communication engineering 99 (1952), 37-44.
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because
∫ +∞
−∞ e−πx dx = 1. Similarly, in Rn, because the Gaussian and the exponentials both factor over

coordinates, the same identity holds:∫
Rn
e−2πiξ·x e−π|x|

2

dx = e−π|ξ|
2

[1.4] Fourier transforms of rational expressions Often, one-dimensional Fourier transforms of relatively
elementary expressions can be evaluated by residues, meaning via Cauchy’s Residue Theorem from complex
analysis. Thus, for example, ∫

R
e−2πiξx

1

1 + x2
dx = 2πi

e−2πξ

i+ i
= π e−2πξ

by looking at residues in the upper or lower complex half-plane, depending on the sign of ξ. Thinking
of Fourier inversion, it is somewhat less obvious how to go in the other direction, to see that the Fourier
transform of e−|ξ| is essentially 1/(1 + x2). Similarly, for 2 ≤ k ∈ Z,

∫
R
e−2πiξx

1

(x− i)k
dx =

 (2πi)(−2πiξ)k−1 e−2π|ξ| (for ξ < 0)

0 (for ξ > 0)

[1.5] Behavior under translations For f ∈ L1(Rn), for xo ∈ Rn, certainly x→ f(x+xo) is still in L1(Rn),
because Lebesgue measure is translation invariant. Changing variables, replacing x by x− xo,

f(∗+ xo)̂ (ξ) =

∫
Rn
e−2πiξ·x f(x+ xo) dx =

∫
Rn
e−2πiξ·(x−xo) f(x) dx

= e2πiξ·xo
∫
Rn
e−2πiξ·x f(x) dx = e2πiξ·xo · f̂(ξ)

[1.6] Behavior under dilations A similar change of variables applies to dilations x → t · x with t > 0:
replacing x by x/t,

f(t · ∗)̂ (ξ) =

∫
Rn
e−2πiξ·x f(t · x) dx =

∫
Rn
e−2πiξ·x/t f(x) t−n dx

= t−n
∫
Rn
e−2πi

ξ
t ·x f(x) dx = t−nf̂(t−1 · ξ)

[1.7] Behavior under linear transformations More generally, with an invertible real matrix A, replacing
x by A−1x,

f(A · ∗)̂ (ξ) =

∫
Rn
e−2πiξ·x f(Ax) dx =

∫
Rn
e−2πiξ·A

−1x f(x) (detA)−1 dx

Since ξ ·A−1x = (A−1)>ξ · x, this is

(detA)−1
∫
Rn
e−2πi(A

−1)>ξ·x f(x) dx = (detA)−1f̂((A−1)>ξ)
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2. Riemann-Lebesgue lemma for L1(R)

[2.1] Theorem: (Riemann-Lebesgue) For f ∈ L1(R), the Fourier transform f̂ is in the space Coo (R) of

continuous functions going to 0 at infinity. In fact, the map f → f̂ is a continuous linear map from the
Banach space L1(R) to the Banach space Coo (R), the latter being the sup-norm completion of Coc (R).

Proof: First, for f ∈ L1(R),

|f̂(ξ)| =
∣∣∣ ∫

R
e−2πiξx f(x) dx

∣∣∣ ≤ ∫
R
|e−2πiξx| · |f(x)| dx =

∫
R
|f(x)| dx = |f |L1

Thus, for |f − g|L1 < ε, for all ξ ∈ R, |f̂(ξ) − ĝ(ξ)| < ε. Thus, Fourier transform is a continuous map of
L1(R) to the Banach space Cobdd(R) of bounded continuous functions with sup norm.

For f the characteristic function of a finite interval, the explicit computation above gives |f̂(ξ)| ≤ 1/π|ξ| for
large |ξ|, which certainly goes to 0 at infinity.

The theory of the Riemann integral shows that the space of finite linear combinations of characteristic
functions of intervals is L1-dense in the space Coc (R) of compactly-supported continuous functions, which is
L1-dense in L1(R) itself, by Urysohn’s lemma and the definition of integral. That is, every f ∈ L1(R) is
an L1-limit of finite linear combinations of characteristic functions of finite intervals. The continuity of the
Fourier transform as a map L1(R) → Cobdd(R) shows that f̂ is the sup-norm limit of Fourier transforms of
finite linear combinations of characteristic functions of finite intervals, which are in Coc (R). The sup-norm

completion of the latter is Coo (R), so f̂ ∈ Coc (R). ///

3. The Schwartz space S = S (Rn)

The Schwartz space on Rn consists of all f ∈ C∞(Rn) such that

sup
x∈Rn

(|x|2)N · |f (α)(x)| < ∞ (for all N , and for all multi-indices α)

where as usual, for a multi-index α = (α1, . . . , αn) with non-negative integer components,

f (α) =
∂α1

∂xα1
1

∂α2

∂xα2
2

. . .
∂αn

∂xαnn
f

Those supremums

νN,α(f) = sup
x∈Rn

(|x|2)N · |f (α)(x)|

required to be finite for Schwartz functions, are semi-norms, in the sense that they are non-negative real-
valued functions with properties νN,α(f + g) ≤ νN,α(f) + νN,α(g) (triangle inequality)

νN,α(c · f) = |c| · νN,α(f) (homogeneity)

In the present context, in fact, these seminorms are genuine norms, insofar as no one of them is 0 except
for the identically-0 function. That is, this family of seminorms is separating in the reasonable sense that, if
νN,α(f − g) = 0 for all N,α, then f = g.
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The natural topology on S associated to this (separating) family of seminorms can be specified by giving a

sub-basis [3] at 0 ∈ S : in a vector space V , we want a topology to be translation-invariant in the sense that
vector addition v → v + vo is a homeomorphism of V to itself. In particular, for every open neighborhood
N of 0, N + vo is an open neighborhood of vo, and vice-versa.

Here, take a sub-basis at 0 indexed by N , α, and ε > 0:

UN,α,ε = {f ∈ S : νN,α(f) < ε}

[3.1] Theorem: With the latter topology, S is a complete metrizable space. [... iou ...]

[3.2] Remark: Since the topology of S is given by seminorms, the topology is also locally convex, meaning
that every point has a basis of neighborhoods consisting of convex sets. This follows from the convexity of
the sub-basis sets, and the fact that an intersection of convex sets is convex. Complete metrizable, locally
convex topological vector spaces (with translation-invariant topology, as expected) are Fréchet spaces. This
is a more general class including Banach spaces. In summary, S is a Fréchet space.

[3.3] Claim: For f ∈ S , ( ∂

∂xj
f
)̂(ξ) = (−2πi) · ξj · f̂(ξ)

Proof: Integration by parts is easily justified for Schwartz functions f , so

( ∂

∂xj
f
)̂(ξ) =

∫
Rn
e−2πiξ·x

∂f

∂xj
(x) dx = −

∫
Rn

∂f

∂xj
e−2πiξ·x · f(x) dx = −

∫
Rn

(−2πiξj)e
−2πiξ·x · f(x) dx

= (2πiξj)

∫
Rn
e−2πiξ·x · f(x) dx = (2πi) · ξj · f̂(ξ)

as claimed. ///

The following claim, essentially the dual or opposite to the previous, has a more difficult proof, a part of
which we postpone.

[3.4] Claim: For f ∈ S ,
∂

∂ξj
f̂(ξ) = (−2πi) · (xj · f)̂(ξ)

Proof: The point is that for Schwartz functions, the differentiation in the parameter ξj can pass inside the
integral:

∂

∂ξj
f̂(ξ) =

∂

∂ξj

∫
Rn
e−2πiξ·x f(x) dx =

∫
Rn

∂

∂ξj
e−2πiξ·x f(x) dx

=

∫
Rn

(−2πixj)e
−2πiξ·x f(x) dx = (−2πi)

∫
Rn
e−2πiξ·x xjf(x) dx = (−2πi) · (xj · f)̂(ξ)

Justification for passing the differential operator inside the integral is best given in a slightly more
sophisticated context, using Gelfand-Pettis vector-valued integrals, so we will not give any elementary-
but-unenlightening argument here. ///

[3] Recall that a set S of sets U 3 xo is a sub-basis at xo when every neighborhood of x contains a finite intersection

of sets from S.
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4. Fourier inversion on S

In our normalization, the inverse Fourier transform is

f∨(x) =

∫
Rn
e2πiξ·x f(ξ) dξ

Of course, this is only slightly different from the forward Fourier transform, and sources sometimes do not
invent a separate symbol for the inverse transform

[4.1] Theorem: (Fourier inversion) (f̂)∨ = f for f ∈ S ,

Proof: [... iou ...] ///

[4.2] Corollary: Fourier transform is a topological vector space isomorphism S → S . [... iou ...]

5. L2-isometry of Fourier transform on S

[5.1] Theorem: (recast by Schwartz, c. 1950) For f, g ∈ S , 〈f, g〉 = 〈f̂ , ĝ 〉.

Proof: [... iou ...] ///

6. Isometric extension and Plancherel on L2(Rn)

[6.1] Theorem: (Plancherel, 1910) There is a unique continuous extension of Fourier transform to an
isometry L2(Rn) → L2(Rn). In anachronistic terms, the Fourier transform S → S extends by continuity
to a map F : L2 → L2, with isometry property

〈Ff, Fg〉 = 〈f, g〉 (for all f, g ∈ L2(Rn))

Proof: The L2 Plancherel theorem on S , and the density of S in L2, give the result. ///

7. Heisenberg uncertainty principle

This is a theorem about Fourier transforms, once we grant a certain model of quantum mechanics. That is,
there is a mathematical mechanism that yields an inequality, which has an interpretation in physics. [4]

For suitable f on R,

|f |2L2 =

∫
R
|f |2 = −

∫
R
x(f · f )′ = −2 Re

∫
R
xff

′
(integrating by parts)

That is,

|f |2L2 =
∣∣|f |2L2

∣∣ =

∣∣∣∣∫
R
|f |2

∣∣∣∣ =

∣∣∣∣−2 Re

∫
R
xff

′
∣∣∣∣ ≤ 2

∫
R
|xff ′|

[4] I think I first saw Heisenberg’s Uncertainty Principle presented as a theorem about Fourier transforms in Folland’s

1983 Tata Lectures on PDE.
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Next,

2

∫
R
|xf · f ′| ≤ 2 · |xf |L2 · |f ′|L2 (Cauchy-Schwarz-Bunyakowsky)

Since Fourier transform is an isometry, and since Fourier transform converts derivatives to multiplications,

|f ′|L2 = |f̂ ′|L2 = 2π|ξf̂ |L2

Thus, we obtain the Heisenberg inequality

|f |2L2 ≤ 4π · |xf |L2 · |ξf̂ |L2

More generally, a similar argument gives, for any xo ∈ R and any ξo ∈ R,

|f |2L2 ≤ 4π · |(x− xo)f |L2 · |(ξ − ξo)f̂ |L2

Imagining that f(x) is the probability that a particle’s position is x, and f̂(ξ) is the probability that its
momentum is ξ, Heisenberg’s inequality gives a lower bound on how spread out these two probability
distributions must be. The physical assumption is that position and momentum are related by Fourier
transform.
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