(April 18, 2017)

Projectors, projection maps, orthogonal projections

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/ [This document is http://www.math.umn.edu/~garrett/m/fun/notes_2016-17/projectors.pdf]

Now that we have some motivation to recall, or clarify, or further clarify, the notion of *projector* or *projection* map, we do so from scratch.

An element P in a ring with $P^2 = P$ is *idempotent*. Idempotency entails

$$P \cdot (1 - P) = P^2 - P = 0$$

and

$$(1-P)^2 = 1 \cdot (1-P) - P \cdot (1-P) = 1 - P + 0 = 1 - P$$

so 1 - P is also idempotent. The property $P_1 \cdot P_2 = 0$ for two idempotents P_1, P_2 is sometimes called *orthogonality*, but this is weaker than the notion of *orthogonal projection* in inner-product spaces.

Recall that the orthogonal projection map or orthogonal projector P of a Hilbert space V to a closed subspace $W \subset V$ is characterized by Pv being the unique point in W closest to v. ^[1] The image Pv is the orthogonal projection of v to W. The *idempotency* $P^2 = P$ follows, since $Pv \in W$ is itself the closest point in W to Pv.

[1.1] Claim: The orthogonal projection Pv of $v \in V$ to W is the unique element $v' \in W$ such that $v - v' \perp W$.^[2]

Proof: The minimality characterization implies that for given $v \in V$, for all $0 \neq w \in W$, the nondegenerate quadratic polynomial function $f_w(t) = |v - Pv - tw|^2$ for $t \in \mathbb{R}$ takes its minimum at t = 0. Taking the derivative, this implies that $-\langle v - Pv, w \rangle - \langle w, v - Pv \rangle + 2t|w|^2$ vanishes at t = 0. That is, $-\langle v - Pv, w \rangle - \langle w, v - Pv \rangle = 0$ for all $w \in W$. Replacing w by μw with $\mu \in \mathbb{C}$ and $|\mu| = 1$ such that $\langle v - Pv, \mu w \rangle = |\langle v - Pv, w \rangle|$, this gives $\langle v - Pv, \mu w \rangle = 0$, and then $\langle v - Pv, w \rangle = 0$, so $v - Pv \perp W$.

Conversely, if $v' \in W$ with $\langle v - v', w \rangle = 0$ for all $w \in W$, then v' = Pv. Indeed, $f_w(t) = |v - v' - tw|^2 = |v|^2 + t^2 |w|^2$, so the minimum occurs at t = 0, and v' is the closest point in W to v.

[1.2] Corollary: The kernel of the orthogonal projection P is exactly the orthogonal complement W^{\perp} .

Proof: On one hand, if $\langle v, w \rangle = 0$, then $\langle v - 0, w \rangle = 0$ for all $w \in W$, so Pv = 0, by the previous discussion. On the other hand, if Pv = 0, then $\langle v - 0, w \rangle = 0$ for all $w \in W$, and $v \in W^{\perp}$.

[1.3] Corollary: For P the orthogonal projector to W, the idempotent 1 - P is the orthogonal projector to W^{\perp} .

Proof: On one hand, P(1-P)v = 0 for all v, so $(1-P)v \in \ker P$, so $(1-P)v \in W^{\perp}$, by the previous corollary. That is, 1-P maps to W^{\perp} , and

$$\langle v - (1 - P)v, u \rangle = \langle Pv, u \rangle = 0$$
 (for all $u \in W^{\perp}$)

[1] The existence and uniqueness of the point Pv follows from the minimum principle.

[2] This recharacterization facilitates proof that P is a continuous linear map. Given $x, y \in V$, $\langle (x + y) - (Px + Py), w \rangle = \langle x - Px, w \rangle + \langle y - Py, w \rangle = 0 + 0$ for all $w \in W$, so P(x) + P(y) = P(x + y). Likewise for linearity: for scalar c, $\langle (cx) - cPx, w \rangle = c \langle x - Px, w \rangle = c \cdot 0$. For continuity, since $Pv \in W$ and $v - Pv \perp W$,

$$|v|^{2} = |(v - Pv) + Pv|^{2} = |v - Pv|^{2} + \langle v - Pv, Pv \rangle + \langle Pv, v - Pv \rangle + |Pv|^{2} = |v - Pv|^{2} + |Pv|^{2}$$

which gives boundedness $|Pv| \leq |v|$, which gives continuity.

///

so by the *claim* (1-P)v is the orthogonal projection of v to W^{\perp} .

[1.4] Example: Idempotency $T^2 = T$ of a linear map T does not guarantee orthogonality, as is already visible in two dimensions: in \mathbb{C}^2 with the usual hermitian inner product and standard basis e_1, e_2 , define T by $Te_1 = e_1$ and $T(e_1 + e_2) = 0$, so $Te_2 = -e_1$. Since there is a basis of eigenvectors with eigenvalues 0 or 1, T is idempotent. But T is not the orthogonal projection to $\mathbb{C} \cdot e_1$, because it sends e_2 , which is orthogonal to $\mathbb{C} \cdot e_1$, to $-e_1$ rather than to 0.

[1.5] Claim: Idempotency and *self-adjointness* imply orthogonality. Conversely, idempotency and orthogonality imply *self-adjointness*.

Proof: Let $P^2 = P$ and $P^* = P$. For all $v, w \in V$,

$$\langle Pv, (1-P)w \rangle = \langle (1-P)^* Pv, w \rangle = \langle (1-P)Pv, w \rangle = \langle 0, w \rangle = 0$$

as claimed. Conversely, with P the orthogonal projector to W, to see that the adjoint P^* maps to W, take $x \in W^{\perp}$:

$$\langle x, P^*y \rangle = \langle Px, y \rangle = \langle 0, y \rangle = 0$$

since ker $P = W^{\perp}$, from above. Then

$$\langle Px, y \rangle = \langle P^2x, y \rangle = \langle Px, P^*y \rangle$$
 (for all $x, y \in V$)

gives $\langle Px, y - P^*y \rangle = 0$ for all $x, y \in V$. Since P surjects to W, this implies that $y - P^*y \in W^{\perp}$. Then $Py = P^*y$, since Py is the unique element in W such that $y - Py \in W^{\perp}$.