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Now that we have some motivation to recall, or clarify, or further clarify, the notion of projector or projection
map, we do so from scratch.

An element P in a ring with P 2 = P is idempotent. Idempotency entails

P · (1− P ) = P 2 − P = 0

and
(1− P )2 = 1 · (1− P )− P · (1− P ) = 1− P + 0 = 1− P

so 1 − P is also idempotent. The property P1 · P2 = 0 for two idempotents P1, P2 is sometimes called
orthogonality, but this is weaker than the notion of orthogonal projection in inner-product spaces.

Recall that the orthogonal projection map or orthogonal projector P of a Hilbert space V to a closed subspace
W ⊂ V is characterized by Pv being the unique point in W closest to v. [1] The image Pv is the orthogonal
projection of v to W . The idempotency P 2 = P follows, since Pv ∈W is itself the closest point in W to Pv.

[1.1] Claim: The orthogonal projection Pv of v ∈ V to W is the unique element v′ ∈ W such that

v − v′ ⊥W . [2]

Proof: The minimality characterization implies that for given v ∈ V , for all 0 6= w ∈ W , the non-
degenerate quadratic polynomial function fw(t) = |v − Pv − tw|2 for t ∈ R takes its minimum at t = 0.
Taking the derivative, this implies that −〈v − Pv,w〉 − 〈w, v − Pv〉 + 2t|w|2 vanishes at t = 0. That is,
−〈v − Pv,w〉 − 〈w, v − Pv〉 = 0 for all w ∈ W . Replacing w by µw with µ ∈ C and |µ| = 1 such that
〈v − Pv, µw〉 = |〈v − Pv,w〉|, this gives 〈v − Pv, µw〉 = 0, and then 〈v − Pv,w〉 = 0, so v − Pv ⊥W .

Conversely, if v′ ∈ W with 〈v − v′, w〉 = 0 for all w ∈ W , then v′ = Pv. Indeed, fw(t) = |v − v′ − tw|2 =
|v|2 + t2|w|2, so the minimum occurs at t = 0, and v′ is the closest point in W to v. ///

[1.2] Corollary: The kernel of the orthogonal projection P is exactly the orthogonal complement W⊥.

Proof: On one hand, if 〈v, w〉 = 0, then 〈v− 0, w〉 = 0 for all w ∈W , so Pv = 0, by the previous discussion.
On the other hand, if Pv = 0, then 〈v − 0, w〉 = 0 for all w ∈W , and v ∈W⊥. ///

[1.3] Corollary: For P the orthogonal projector to W , the idempotent 1−P is the orthogonal projector to
W⊥.

Proof: On one hand, P (1 − P )v = 0 for all v, so (1 − P )v ∈ kerP , so (1 − P )v ∈ W⊥, by the previous
corollary. That is, 1− P maps to W⊥, and

〈v − (1− P )v, u〉 = 〈Pv, u〉 = 0 (for all u ∈W⊥)

[1] The existence and uniqueness of the point Pv follows from the minimum principle.

[2] This recharacterization facilitates proof that P is a continuous linear map. Given x, y ∈ V , 〈(x + y) − (Px +

Py), w〉 = 〈x − Px,w〉 + 〈y − Py,w〉 = 0 + 0 for all w ∈ W , so P (x) + P (y) = P (x + y). Likewise for linearity: for

scalar c, 〈(cx)− cPx,w〉 = c〈x− Px,w〉 = c · 0. For continuity, since Pv ∈W and v − Pv ⊥W ,

|v|2 = |(v − Pv) + Pv|2 = |v − Pv|2 + 〈v − Pv, Pv〉+ 〈Pv, v − Pv〉+ |Pv|2 = |v − Pv|2 + |Pv|2

which gives boundedness |Pv| ≤ |v|, which gives continuity.
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so by the claim (1− P )v is the orthogonal projection of v to W⊥. ///

[1.4] Example: Idempotency T 2 = T of a linear map T does not guarantee orthogonality, as is already
visible in two dimensions: in C2 with the usual hermitian inner product and standard basis e1, e2, define T
by Te1 = e1 and T (e1 + e2) = 0, so Te2 = −e1. Since there is a basis of eigenvectors with eigenvalues 0 or 1,
T is idempotent. But T is not the orthogonal projection to C · e1, because it sends e2, which is orthogonal
to C · e1, to −e1 rather than to 0.

[1.5] Claim: Idempotency and self-adjointness imply orthogonality. Conversely, idempotency and
orthogonality imply self-adjointness.

Proof: Let P 2 = P and P ∗ = P . For all v, w ∈ V ,

〈Pv, (1− P )w〉 = 〈(1− P )∗Pv,w〉 = 〈(1− P )Pv,w〉 = 〈0, w〉 = 0

as claimed. Conversely, with P the orthogonal projector to W , to see that the adjoint P ∗ maps to W , take
x ∈W⊥:

〈x, P ∗y〉 = 〈Px, y〉 = 〈0, y〉 = 0

since kerP = W⊥, from above. Then

〈Px, y〉 = 〈P 2x, y〉 = 〈Px, P ∗y〉 (for all x, y ∈ V )

gives 〈Px, y − P ∗y〉 = 0 for all x, y ∈ V . Since P surjects to W , this implies that y − P ∗y ∈ W⊥. Then
Py = P ∗y, since Py is the unique element in W such that y − Py ∈W⊥. ///
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