Spectral theorem for self-adjoint continuous operators on Hilbert spaces

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/

[This document is http://www.math.umn.edu/~garrett/m/fun/notes_2016-17/spectral_theorem_bdd.pdf]

1. Spectral theorem, part one
2. Schur’s lemma and other corollaries
3. Spectral theorem, part two: projectors
4. Appendix: goofy lemma on polynomials
5. Appendix: Tietze-Urysohn-Brouwer extension theorem
6. Appendix: Urysohn’s lemma
7. Appendix: notes

1. Spectral theorem, part one

The isomorphism of the theorem is a special, concrete case of the Gelfand isomorphism.

Let T be a continuous linear map $V \to V$ for a (separable) Hilbert space V. Its spectrum $\sigma(T)$ is a compact subset of \mathbb{R}, so is certainly contained in some finite interval $[a,b]$. As usual, for a self-adjoint continuous operator S on V, write $S \geq 0$ when $\langle Sv, v \rangle \geq 0$ for all $v \in V$. For self-adjoint S, T, write $S \leq T$ when $T - S \geq 0$. At the outset, with $a \leq -|T|_{\text{op}}$ and $b \geq |T|_{\text{op}}$, we have, $\langle a \cdot v, v \rangle \leq \langle T v, v \rangle \leq \langle b \cdot v, v \rangle$. That is, $a \leq T \leq b$, where the scalars refer to scalar operators on V. As a corollary of part one of the spectral theorem, we will see that, in fact, $\inf_{\lambda \in \sigma(T)} \lambda \leq T \leq \sup_{\lambda \in \sigma(T)}$, but it seems difficult (and un-necessary) to prove this inequality directly.

In the following all functions are real-valued, so $C^o[a,b]$ refers to real-valued continuous functions on $[a,b]$.

[1.1] Theorem: The map $\mathbb{R}[x] \to \mathbb{R}[T]$ on polynomials given by $f \to f(T)$ is continuous for $\mathbb{R}[x]$ with the sup-norm on $[a,b]$, and $\mathbb{R}[T]$ with the operator norm. Thus, by Weierstraß approximation, this map extends to a continuous map $C^o[a,b] \to \mathbb{R}[T]$, the latter being the operator-norm completion of $\mathbb{R}[T]$. This map factors through $C^o(\sigma(T))$:

$$C^o[a,b] \to C^o(\sigma(T)) \to \mathbb{R}[T]$$

and the map $C^o(\sigma(T)) \to \mathbb{R}[T]$ is an isometric isomorphism, where $C^o(\sigma(T))$ has sup-norm.

Proof: We claim that for $f \in \mathbb{R}[x]$ with $f(x) \geq 0$ on $[a,b]$, then $f(T) \geq 0$. From the goofy lemma on polynomials, f is expressible as a finite sum of the form

$$f = \sum_i P_i^2 + (x-a) \sum_j Q_j^2 + (b-x) \sum_k R_k^2$$

for polynomials P_i, Q_j, R_k in $\mathbb{R}[x]$. We have

[1.2] Lemma: For commuting self-adjoint S, T with $T \geq 0$, also $S^2 T \geq 0$.

Proof: $\langle S^2 Tv, v \rangle = \langle TSv, S^* v \rangle = \langle T(Sv), (Sv) \rangle \geq 0$.

Thus, since $a \leq T \leq b$, and all these operators commute (being polynomials in T), each $P_i^2(T) \geq 0$, each $(T-a)Q_j^2(T) \geq 0$, and $(b-T)R_k^2(T) \geq 0$. Thus, $f(T) \geq 0$, proving the claim.

Since $g(x) = \sup_{[a,b]} |f| \pm f(x) \geq 0$ on $[a,b]$, $\sup_{[a,b]} |f| \pm f(T) \geq 0$. That is, $-\sup_{[a,b]} |f| \leq f(T) \leq \sup_{[a,b]} |f|$, which gives

$$|f(T)|_{\text{op}} = \sup_{|v| \leq 1} |f(T)v| \leq \sup_{|v| \leq 1} \sup_{[a,b]} |f| \cdot |v| = \sup_{[a,b]} |f|$$
which is the desired inequality. Thus, we can extend by continuity to the sup-norm closure of \(\mathbb{R}[x] \) in \(C^0[a,b] \), which by Weierstraß is the whole \(C^0[a,b] \), giving \(C^0[a,b] \rightarrow \mathbb{R}[T] \), the latter being the operator-norm closure of \(\mathbb{R}[T] \), with \(|f(T)|_{op} \leq |f|_{C^0[a,b]} \). Since \(\mathbb{R}[x] \rightarrow \mathbb{R}[T] \) is a ring homomorphism, the extension by continuity is also a ring homomorphism.

We capture some useful partial results:

[1.3] **Corollary:** \((Existence of square roots of positive operators)\) For \(T \geq 0 \), there is \(S \in \mathbb{R}[x] \) such that \(S \geq 0 \) and \(S^2 = T \).

Proof: Since \(T \geq 0 \), without yet claiming anything about the spectrum of \(T \), we can take \([a, b] = [0, b]\) in the previous discussion. The function \(f(x) = \sqrt{x} \in C^0[0, b] \) is non-negative on \([0, b]\), and \(f(T)^2 = f^2(T) = T \). Take \(S = f(T) \).

[1.4] **Corollary:** \((Positivity of products of commuting positive operators)\) For \(S \geq 0 \) and \(T \geq 0 \) with \(ST = TS \), also \(ST \geq 0 \).

Proof: From the previous corollary, there is \(R \in \mathbb{R}[S] \) such that \(R \geq 0 \) and \(R^2 = S \). Also, \(R \) commutes with \(T \), by continuity. Thus,

\[
\langle STv, v \rangle = \langle R^2Tv, v \rangle = \langle TR^2v, v \rangle = \langle TRv, Rv \rangle \geq 0
\]

because \(T \geq 0 \).

Next, let \(I \) be the kernel of \(C^0[a,b] \rightarrow \mathbb{R}[T] \). It is an ideal in \(C^0[a,b] \), and is (topologically) closed because \(C^0[a,b] \rightarrow \mathbb{R}[T] \) is continuous. Let \(\tau(T) \subset [a, b] \) be the simultaneous zero-set of all the functions in \(I \). Shortly, we will see that \(\tau(T) = \sigma(T) \), but we cannot use this yet.

The following is a sort of *Nullstellensatz* for the present situation:

[1.5] **Claim:** The restriction map \(C^0[a,b] \rightarrow C^0(\tau(T)) \) has kernel \(I \). That is, if \(f |_{C^0(\tau(T))} = 0 \), then \(f(T) = 0 \). More precisely, \(f \geq 0 \) on \(\tau(T) \) if and only if \(f(T) \geq 0 \).

Proof: It suffices to show that \(f(T) \geq 0 \) implies \(f \geq 0 \) on \(\tau(T) \). If \(f \) is not non-negative on \(\tau(T) \), then there is \(x_o \in \tau(T) \) where \(f(x_o) < 0 \). Using the continuity of \(f \), take a small neighborhood \(N \) of \(x_o \) in \([a,b]\) such that \(f(x) < 0 \) on \(N \). Let \(g \in C^0[a,b] \) be supported inside \(N \), non-negative, and strictly positive at \(x_o \). Then \(fg \leq 0 \), and \(fg(x_o) < 0 \), so \(-f g(T) \geq 0 \). But \(f(T) \geq 0 \) and \(g(T) \geq 0 \), so by the corollary on positivity of commuting positive operators, \(fg(T) \geq 0 \). Thus, \(fg(T) = 0 \), so \(fg \in I \), and \(fg |_{\tau(T)} = 0 \), contradiction. Thus, \(f \geq 0 \) on \(\tau(T) \).

Thus, if \(f = 0 \) on \(\tau(T) \), both \(f \geq 0 \) and \(-f \geq 0 \) on \(\tau(T) \), so both \(f(T) \geq 0 \) and \(-f(T) \geq 0 \), so \(f(T) = 0 \), and \(f \in I \).

[1.6] **Corollary:** \(C^0[a,b] \rightarrow \mathbb{R}[T] \) factors through \(C^0(\tau(T)) \), giving a commutative diagram

\[
\begin{array}{ccc}
C^0[a,b] & \rightarrow & C^0(\tau(T)) \\
\downarrow & & \downarrow \\
\mathbb{R}[T] & & \\
\end{array}
\]

The induced map \(C^0(\tau(T)) \rightarrow \mathbb{R}[T] \) is a bijection, and \(|f(T)|_{op} \geq |f|_{C^0(\tau(T))} \).

Proof: By the Tietze-Urysohn-Brouwer extension theorem (see appendix), every continuous function on \(\tau(T) \) has an extension to a continuous function on \([a,b]\), with the same sup-norm. This gives the surjectivity of \(C^0[a,b] \rightarrow C^0(\tau(T)) \). By the claim, \(C^0(\tau(T)) \approx C^0[a,b]/I \), giving the injectivity to \(\mathbb{R}[T] \).

Given the positivity, since \(|f(T)|_{op} \pm f(T) \geq 0 \), from the previous claim \(|f(T)|_{op} \pm f(x) \geq 0 \) for \(x \in \tau(T) \). Thus, \(\sup_{x \in \tau(T)} |f(x)| \leq |f(T)|_{op} \).
Now we can refine the earlier argument to give the other inequality on norms:

[1.7] Corollary: The induced map \(C^\circ(\tau(T)) \rightarrow \mathbb{R}[T] \) is an isometric isomorphism. That is, the map is a bijection, and \(|f(T)|_{\text{op}} = |f|_{C^\circ(\tau(T))} \).

Proof: For \(f \geq 0 \) on \(\tau(T) \), again by Tietze-Urysohn-Brouwer, there is an extension \(g \geq 0 \) of \(f \) to \([a,b]\) with the same sup norm. The first claim of the proof showed that \(|f(T)|_{\text{op}} \leq |g|_{C^\circ[a,b]} \), so

\[
|f|_{C^\circ(\tau(T))} \leq |f(T)|_{\text{op}} \leq |g|_{C^\circ[a,b]} = |f|_{C^\circ(\tau(T))}
\]

giving the isometry. In particular, for \(f_n(T) \) a Cauchy sequence in the operator norm (for \(f_n \in C^\circ(\tau(T)) \)), the sequence \(f_n \) is Cauchy in \(C^\circ(\tau(T)) \), so converges to some \(f \in C^\circ(\tau(T)) \). By the isometry, \(f_n(T) \rightarrow f(T) \), giving the surjection to the closure.

What remains is to show that \(\tau(T) = \sigma(T) \).

First, we reprove the fact that \(\sigma(T) \subset \mathbb{R} \). For \(\lambda \in \mathbb{C} \) such that there is no \((T - \lambda)^{-1} \), the polynomial \(f(x) = (x - \lambda)(x - \overline{\lambda}) \) is non-zero on \(\mathbb{R} \), so certainly on \(\tau(T) \), so has an inverse \(h(x) = 1/g(x) \in C^\circ(\tau(T)) \). Then \(h(T)(T - \lambda) \) would be an inverse for \(T - \lambda \), contradiction. Thus, \(\sigma(T) \subset \mathbb{R} \).

For \(\lambda \) real and not in \(\tau(T) \), \(x - \lambda \) is invertible on \(\tau(T) \) with inverse \(h \in C^\circ(\tau(T)) \), so

\[
h(T) \circ (T - \lambda) = (h \cdot (x - \lambda))(T) = 1(T) = 1
\]

and similarly \((T - \lambda) \circ h(T) = 1 \), so \(T - \lambda \) is invertible. For \(\lambda \in \tau(T) \), for \(n > 0 \), let \(f_n(x) \in C^\circ[a,b] \) be

\[
f_n(x) = \begin{cases} N & \text{(for } |x - \lambda| \leq \frac{1}{N} \text{)} \\ \frac{1}{|x - \lambda|} & \text{(for } |x - \lambda| \geq \frac{1}{N} \text{)} \end{cases}
\]

Thus, \(|(x - \lambda) \cdot f_n|_{C^\circ(\tau(T))} \leq 1 \), and \((T - \lambda)f_n(T)_{\text{op}} \leq 1 \). If \(T - \lambda \) had an inverse \(S \), then for all \(n \)

\[
n \leq |f_n|_{C^\circ(\tau(T))} = |f_n(T)|_{\text{op}} = |1 \cdot f_n(T)|_{\text{op}} = |S \cdot (T - \lambda) \cdot f_n(T)|_{\text{op}} \leq |S|_{\text{op}} \cdot |(T - \lambda) \cdot f_n(T)_{\text{op}} \leq |S|_{\text{op}}
\]

This is impossible, so there is no inverse. This proves that \(\tau(T) = \sigma(T) \).

2. Schur’s lemma and other corollaries

[2.1] Corollary: For \(\inf \sigma(T) \leq T \leq \sup \sigma(T) \).

Proof: Let \(a = \inf \sigma(T) \) and \(b = \sup \sigma(T) \). Since \(x - a \geq 0 \) on \(\sigma(T) \), \((x - a)(T) = T - a \geq 0 \). Since \(b - x \geq 0 \) on \(\sigma(T) \), \((b - x)(T) = b - T \geq 0 \).

[2.2] Corollary: If \(\sigma(T) = \{\lambda\} \), then \(T \) is the scalar operator \(\lambda \).

Proof: Because the function \(f(x) = x \) restricted to \(\{\lambda\} \) is equal to the restriction of the constant function \(g(x) = \lambda \),

\[
T = f(T) = g(T) = \lambda
\]

meaning the scalar operator.

[2.3] Remark: Certainly the converse is not true: there easily can be eigenvalues *imbedded* in continuous spectrum.
[2.4] **Corollary:** (Schar’s lemma) Let R be a set of continuous linear operators on a Hilbert space V, and suppose V is R-irreducible, in the sense that there is no R-stable closed subspace of V other than $\{0\}$ and V itself. Let T be a self-adjoint operator commuting with all operators from R. Then T is scalar.

Proof: Suppose that $\sigma(T)$ contains at least two distinct points x_1, x_2, and show that V is not R-irreducible. Let f, g be continuous functions with disjoint supports, such that $f(x_1) = 1$ and $g(x_2) = 1$. Thus, $fg = 0$, and $f(T)g(T) = g(T)f(T) = 0$. The image $f(T)(V)$ is not 0, because $f(T) \neq 0$. Also, $f(T)(V)$ is inside the kernel of $g(T)$, because $g(T)f(T) = (gf)(T) = 0$. By continuity of $g(T)$, the closure W of $f(T)(V)$ is also inside the kernel of $g(T)$. Since $g(T) \neq 0$, necessarily $W \neq V$.

Since T commutes with all operators in R, $\mathbb{R}[T]$ commutes with R, and by continuity of operators in R, $\mathbb{R}[T]$ commutes with R. Thus, R commutes with $f(T)$ and $g(T)$, so for $S \in R$,

$$S(f(T)(V)) = f(T)(SV) \subset f(T)(V)$$

That is, R stabilizes $f(T)(V)$. By continuity of operators in R, R stabilizes the closure W of $f(T)(V)$. But W is a proper closed subspace of V, so V is not R-irreducible. Since $\sigma(T) \neq \phi$, it is a singleton $\{\lambda\}$. By the previous corollary, T is the scalar operator λ.

[2.5] **Remark:** Recall that Liouville’s theorem on bounded entire functions implies that the spectrum of a continuous linear operator on a Hilbert space is not empty, as follows. If a continuous $R_{\lambda} = (T - \lambda)^{-1}$ exists for every complex λ, then for $0 \neq v \in V$, $R_{\lambda}v \in V$ is never $0 \in V$. Take $w \in V$ such that $\langle R_{\lambda}, v, w \rangle \neq 0$ for some $\lambda \in \mathbb{C}$. Then $f(\lambda) = \langle R_{\lambda}v, w \rangle$ is a not-identically 0 entire function. At the same time, for large $|\lambda|$, the operator norm of R_{λ} is small. Thus, $f(\lambda)$ is small for large $|\lambda|$, and must be identically 0, by Liouville, contradiction.

///

3. Spectral theorem, part two: projectors

The earlier spectral theorem gives an isomorphism of the operator-norm-topology closure of $\mathbb{R}[T]$ to $C^0(\sigma(T))$. In the (larger) closure in the strong operator topology, given by seminorms $\mu_v(S) = |Sv|$ for all $v \in V$, we will exhibit a family of projectors that includes projectors to eigenspaces.

For each $t \in \mathbb{R}$ and $\varepsilon > 0$, consider a family of continuous approximations to step functions:

$$h_{t,\varepsilon}(x) = \begin{cases} 1 & (\text{for } x \leq t) \\ 1 - \frac{x-t}{\varepsilon} & (\text{for } t \leq x \leq t + \varepsilon) \\ 0 & (\text{for } x \geq t + \varepsilon) \end{cases}$$

The proof of the following accomplishes more along the way than in its assertion. The operators P_t in the theorem are projectors:

[3.1] **Theorem:** The strong operator topology limit $P_t = \lim_{\varepsilon \to 0^+} h_{t,\varepsilon}(T)$ exists. For $s \leq t$, we have $P_s \leq P_t$. For real scalars $a \leq b$ such that $a \leq T \leq b$, $P_t = 0$ for $t < a$, and $P_t = 1$ for $t > b$. For all $t \in \mathbb{R}$, $P_t^2 = P_t$. There is one-sided continuity: $\lim_{\varepsilon \to 0^+} P_{t+\varepsilon} = P_t$.

Proof: First we need

[3.2] **Claim:** Monotone-decreasing, bounded-from-below limits of self-adjoint operators converge in the strong operator topology. That is, for self-adjoint operators $T_1 \geq T_2 \geq \ldots$ with $T_n \geq c$ for some c, for all n, the limit T_n exists in the strong operator topology, namely, $\lim_n T_nv$ exists (in the topology on V) for all $v \in V$.

4
Proof: The inequality gives $\langle T_nv,v \rangle \geq \langle T_{n+1}v,v \rangle \geq \ldots \geq c \cdot \langle v,v \rangle$. That is, $\langle T_nv,v \rangle$ is a monotone-decreasing, bounded-from-below sequence of reals. Thus, it has a limit. By polarization, $\lim_n(T_nv,w)$ exists for all $v,w \in V$. That is, $\lim_n T_n$ exists in the weak operator topology. We must improve the result to obtain the better result that it converges in the strong operator topology. To this end, let $\lambda_n(w) = \lim_n(T_nv,w)$. This is a conjugate-linear functional on V, and is continuous:

$$|\lambda_n(w)| \leq ||T_nv,w|| \leq |T|_{op} \cdot |v| \cdot |w|$$

Thus, λ_n is bounded, hence continuous. By Riesz-Fréchet, for all $v \in V$ there is $Tv \in V$ such that $\langle Tv,w \rangle = \lim_n(T_nv,w)$, for all $w \in V$. One can check that T is linear, continuous, and self-adjoint. \///

[3.3] Claim: For a bounded-from-below function f on $\sigma(T)$ expressible as a monotone-decreasing limit f of $f_n \in C^0(\sigma(T))$ (bounded from below on $\sigma(T)$), the strong operator limit $\lim_n f_n(T)$ is independent of the sequence $\{f_n\}$ having limit f. Thus, there is an unambiguously operator $f(T) = \lim_n f_n(T)$.

Proof: Let g_n also decrease monotonically to f. For all $\varepsilon > 0$, for all m, for sufficiently large n, $\max(g_n(x),f_m(x)) \leq f_m(x) + \varepsilon$ for all x, so $g_n(x) \leq f_m(x) + \varepsilon$. Thus, $g_n(T) \leq f_m(T) + \varepsilon$. Thus, $\lim_n g_n(T) \leq f_m(T) + \varepsilon$, and then $\lim_n g_n(T) \leq \lim_n f_m(T) + \varepsilon$. Since this holds for all $\varepsilon > 0$, and the roles of g_n and f_m can be reversed, we have equality. \///

[3.4] Corollary: Thus, the map $C^0(\sigma(T)) \to \mathbb{R}[T]$ (operator-norm-closure) extends to a map defined on monotone-decreasing, bounded-below limits of functions in $C^0(\sigma(T))$, mapping continuously to the strong operator topology closure of $\mathbb{R}[T]$. The extension is still additive, inequality-preserving, and multiplicative (in the sense that $fg(T) = f(T) \cdot g(T)$). \///

[3.5] Corollary: Since $\text{ch}_{(-\infty,t]}$ is the monotone-decreasing (bounded below) limit of $h_{t,\varepsilon}$, we have $P_t = \text{ch}_{(-\infty,t]}(T)$. Further, $P_s \leq P_t$ for $s \leq t$, and $P_t^2 = P_t$, $(1 - P_t)P_t = P_t(1 - P_t) = 0$. Further, P_t is an orthogonal projection, in the sense that $(P_tV)^\perp = (1 - P_t)V$.

Proof: The first assertion is a special case of the previous claim. Since $\text{ch}_{(-\infty,s]} \leq \text{ch}_{(-\infty,t]}$ for $s \leq t$, the second assertion follows. The third assertion follows from $\text{ch}_{(-\infty,t]} = \text{ch}_{(-\infty,t]}$ and $(1 - \text{ch}_{(-\infty,t]}) \cdot \text{ch}_{(-\infty,t]} = 0$. Since P_t is in the strong. Since P_t is in the strong operator topology closure of a set of self-adjoint operators, it is self-adjoint. The computation

$$\langle P_tv, (1 - P_t)w \rangle = \langle (1 - P_t)P_tv, w \rangle = \langle 0, w \rangle = 0$$

shows that $(1 - P_t)V \subset (P_tV)^\perp$. Equality follows from $(1 - P_t) + P_t = 1$. \///

[3.6] Claim: $a \leq \lim_{\text{sup}}(P_a - P_b)V \leq b$ for $a \leq b$.

Proof: Let

$$f(x) = \begin{cases} 0 & \text{for } x \leq t \\ x - t & \text{for } x \geq t \end{cases} \quad \text{and} \quad g(x) = \begin{cases} |x - t| & \text{for } x \leq t \\ 0 & \text{for } x \geq t \end{cases}$$

Thus, $f(x) + g(x) = |x - t|$. Since $(x - t) \cdot (1 - \text{ch}_{(-\infty,t]}) = f(x)$, we have $(T - t)(1 - P_t) = f(T)$. Thus, $T - t = f(T)$ on $(P_tV)^\perp$. Since $f \geq 0$, $(T - t) \geq 0$ on $(P_tV)^\perp$. Take $t = a$.

Since $(x - t)\text{ch}_{(-\infty,t]} = -g(x)$, we have $(T - t)P_t = -g(T)$. Thus, $T - b = -g(T)$ on P_tV. Since $-g \leq 0$, $T \leq t$ on P_tV. Take $t = b$. \///

[3.7] Claim: $t \to P_t$ is strong operator topology continuous on the right.
Proof: The claim is that \(\lim_{\varepsilon \to 0^+} P_{t+\varepsilon} = P_t \) in the strong operator topology. Since \(\langle (P_{t+\varepsilon} - P_t)v, v \rangle = |(P_{t+\varepsilon} - P_t)v|^2 \), it suffices to show that, for all \(v \in V \), \(\langle P_{t+\varepsilon}v, v \rangle \to \langle P_tv, v \rangle \). And \(\lim_{\varepsilon \to 0^+} h_{t,\varepsilon}(T) = P_t \) in the strong operator topology, meaning that \(\lim_{\varepsilon \to 0^+} h_{t,\varepsilon}(T)(v) = P_t(v) \) for every \(v \in V \).

Certainly \(\text{ch}_{[-\infty,t]} \leq \text{ch}_{[-\infty,t+\delta]} \leq h_{t+\delta,\varepsilon} \) so \(P_t \leq P_{t+\delta} \leq h_{t+\delta,\varepsilon}(T) \). Since \(\lim_{\varepsilon \to 0^+} h_{t+\delta,\varepsilon} = h_{t,\varepsilon} \) in sup-norm, \(h_{t+\delta,\varepsilon}(T) \to h_{t,\varepsilon}(T) \) in operator norm topology. Given small \(\eta > 0 \), let \(\delta > 0 \) be small enough so that \(h_{t+\delta}(T) \leq h_{t}(T) + \eta \). Then

\[
P_t \leq P_{t+\delta} \leq h_{t+\delta}(T) \leq h_{t}(T) + \eta
\]

and

\[
\langle P_tv, v \rangle \leq \langle P_{t+\delta}v, v \rangle \leq \langle h_{t+\delta}(T)v, v \rangle \leq \langle (h_{t}(T) + \eta)v, v \rangle
\]

Since \(h_{t}(T)v \to P_tv \), we have \(\langle P_tv, v \rangle \leq \langle P_{t+\delta}v, v \rangle \leq \langle P_tv, v \rangle + \eta(v, v) \). This holds for arbitrary \(\eta \). ///

[3.8] Theorem: \(\lim_{\varepsilon \to 0^+} P_t - P_{t-\varepsilon} \) is the projector to the \(t \)-eigenspace of \(T \).

Proof: Certainly \(\text{ch}_{[-\infty,t]} - \text{ch}_{[-\infty,t-\varepsilon]} \) is monotone decreasing (and bounded below) as \(\varepsilon \to 0^+ \), so \(P_t - P_{t-\varepsilon} \) converges in the strong operator topology to a continuous operator \(Q \). From \(a \leq \|T\|_{(P_\varepsilon - P_0)V} \leq b \) for \(a \leq b \),

\[
(t-a)(P_t - P_{t-\varepsilon}) \leq T(P_t - P_{t-\varepsilon}) \leq t(P_t - P_{t-\varepsilon})
\]

so \(|T-(T)(P_t - P_{t-\varepsilon})|_{op} \leq \varepsilon \). Let \(w = Qv \). Then \(|(T-t)w| \leq \varepsilon \) for all \(\varepsilon > 0 \), \((T-t)w = 0 \). Thus, \(Q \) maps to the \(t \)-eigenspace.

Conversely, we show that \(Q \) is the identity map on the \(t \)-eigenspace \(V_t \). For continuous, real-valued \(f \), and for a \(T \)-stable subspace \(W \) of \(V \), \(f(T|_W) = f(T)|_W \), so we may assume without loss of generality that \(T \) is a scalar \(t \) on \(V \). For all \(\varepsilon > 0 \), \(h_{t,\varepsilon} = 1 \) on \(\sigma(T) = \{t\} \), so \(h_{t,\varepsilon}(T) = 1 \), and the strong operator topology limit is 1. For \(s < t \), for sufficiently small \(\varepsilon > 0 \), \(h_{s,\varepsilon} = 0 \) on \(\sigma(T) = \{t\} \), so \(h_{s,\varepsilon}(T) = 0 \). Thus, \(Q = 1 \). ///

[3.9] Corollary: An isolated point \(\lambda \) of \(\sigma(T) \) is an eigenvalue of \(T \).

Proof: \(\text{ch}_{[-\infty,\lambda]} - \text{ch}_{[-\infty,\lambda-\varepsilon]} \) is non-zero for \(\varepsilon > 0 \), because \(\lambda \in \sigma(T) \). Thus, \(P_\lambda - P_{\lambda-\varepsilon} \) is non-zero for \(\varepsilon > 0 \). For \(\lambda \) isolated, \(P_{\lambda-\varepsilon} \) is constant for \(\varepsilon > 0 \) sufficiently small. Thus, the limit \(\lim_{\varepsilon \to 0^+} P_\lambda - P_{\lambda-\varepsilon} \) is non-zero, and by the previous theorem this is the projector to the eigenspace. ///

4. Appendix: goofy lemma on polynomials

The following peculiar lemma is not surprising, is essentially elementary, and facilitates a usefully gradual approach to the spectral theorem and its corollaries.

[4.1] Lemma: Let \(f \in \mathbb{R}[x] \) be non-negative-valued on a finite interval \([a,b] \). Then \(f \) is expressible as a finite sum of the form

\[
f = \sum_i P_i^2 + (x-a) \sum_j Q_j^2 + (b-x) \sum_k R_k^2
\]

for polynomials \(P_i, Q_j, R_k \) in \(\mathbb{R}[x] \).

Proof: It suffices to consider monic \(f \), since positive constants can be absorbed. Factor \(f \) into irreducibles over \(\mathbb{R} \), show that each of the linear and quadratic factors can be expressed in the given form, and then show that a product of such expressions can be re-written in the same form.

For quadratic irreducibles with complex-conjugate roots \(z, \bar{z} \), by completing the square,

\[
(x-z)(x-\bar{z}) = x^2 - (z+\bar{z})x + z\bar{z} = (x - \frac{z+\bar{z}}{2})^2 + (z\bar{z} - \frac{(z+\bar{z})^2}{2})
\]
Since
\[z \pi - \left(\frac{z + \pi}{2}\right)^2 = z \pi - \frac{1}{4}(z^2 + 2z\pi + \pi^2) = -\frac{1}{4}(z - \pi)^2 = \frac{(\frac{z - \pi}{2})^2}{2} = (\text{Im } z)^2 > 0 \]
we have the desired expression for \((x - z)(x - \pi)\).

A linear factor \(x - \alpha\) with \(a < \alpha < b\) must occur to an even power, since otherwise \(f(x)\) would take opposite signs on the two sides of \(\alpha\), contradicting the positivity of \(f\) on \([a, b]\).

A linear factor \(x - \alpha\) with \(a \leq \alpha\) can be rewritten as
\[x - \alpha = (x - a) + (a - \alpha) = (x - a) \cdot 1 + (a - \alpha) \]
Since \(a - \alpha \geq 0\), it is a square of an element of \(\mathbb{R}\), and this gives the desired expression. Similarly, a linear factor \(\alpha - x\) with \(\alpha \geq b\) can be rewritten as
\[\alpha - x = (b - x) + (\alpha - b) \]
Thus, all the factors of \(f\) can be written in the desired form. As for products, we can inductively rewrite them by
\[P^2 \cdot Q^2 = (PQ)^2 \quad (x - a)P^2 \cdot Q^2 = (x - a)(PQ)^2 \quad (x - a)P^2 \cdot (x - a)Q^2 = ((x - a)PQ)^2 \]
\[(b - x)P^2 \cdot Q^2 = (b - x)(PQ)^2 \quad (b - x)P^2 \cdot (b - x)Q^2 = ((b - x)PQ)^2 \]
The only possible issue is the form \((x - a)P^2 \cdot (b - x)Q^2\). By luck,
\[(x - a)(b - x) = (x - a)(b - x) \cdot \frac{(b - x) + (x - a)}{(b - x) + (x - a)} = \frac{(x - a)(b - x)^2 + (b - x)(x - a)^2}{b - a} \]
which is of the desired form. Iterating these rewritings gives the lemma.

5. Appendix: Tietze-Urysohn-Brouwer extension theorem

Granting Urysohn’s lemma, this result is not difficult.

[5.1] Theorem: For \(X\) a normal space (meaning that any two disjoint closed sets have disjoint open neighborhoods), closed subset \(E \subset X\), every continuous, bounded, real-valued \(f\) on \(E\) extends to \(F\) on \(X\) such that \(\sup_X |F| = \sup_E |f|\).

Proof: Without loss of generality, the image of \(f\) is contained in \([0, 1]\). Urysohn’s lemma will be repeatedly invoked: given disjoint, closed \(B_n, C_n\) in \(X\), there is continuous \(g_n\) on \(X\) taking values in \([0, \frac{1}{2}(2/3)^n]\) such that \(g_n = 0\) on \(B_n\) and \(g_n = \frac{1}{2}(2/3)^n\) on \(C_n\). Specify the subsets \(B_n, C_n\) \((n = 1, 2, \ldots)\) of \(E\) inductively by
\[B_1 = \{x \in E : f(x) \leq \frac{1}{3}\} \quad C_1 = \{x \in E : f(x) \geq \frac{2}{3}\} \]
and
\[B_n = \{x \in E : f(x) - \sum_{i=1}^{n-1} g_i(x) \leq \frac{2^{n-1}}{3^{n}}\} \quad C_n = \{x \in E : f(x) - \sum_{i=1}^{n-1} g_i(x) \geq \frac{2^n}{3^{n}}\} \]
These are disjoint closed subsets of \(E\), so are closed in \(X\). The sum \(F = \sum_{i=1}^{\infty} g_i\) converges uniformly, so is continuous. On \(E\), \(0 \leq f - F \leq (2/3)^n\) for all \(n\), so \(F = f\) on \(E\).
6. Appendix: Urysohn's lemma

[6.1] Theorem: (Urysohn) In a locally compact Hausdorff topological space X, given a compact subset K contained in an open set U, there is a continuous function $0 \leq f \leq 1$ which is 1 on K and 0 off U.

Proof: First, we prove that there is an open set V such that

$$K \subset V \subset \overline{V} \subset U$$

For each $x \in K$ let V_x be an open neighborhood of x with compact closure. By compactness of K, some finite subcollection V_{x_1}, \ldots, V_{x_n} of these V_x cover K, so K is contained in the open set $W = \bigcup_i V_{x_i}$ which has compact closure $\bigcup_i \overline{V}_{x_i}$, since the union is finite.

Using the compactness again in a similar fashion, for each x in the closed set $X \setminus U$ there is an open W_x containing K and a neighborhood U_x of x such that $W_x \cap U_x = \emptyset$.

Then

$$\bigcap_{x \in X \setminus U} (X \setminus U) \cap \overline{W} \cap \overline{W}_x = \emptyset$$

These are compact subsets in a Hausdorff space, so (again from compactness) some finite subcollection has empty intersection, say

$$(X \setminus U) \cap (\overline{W} \cap \overline{W}_{x_1} \cap \ldots \cap \overline{W}_{x_n}) = \emptyset$$

That is,

$$\overline{W} \cap \overline{W}_{x_1} \cap \ldots \cap \overline{W}_{x_n} \subset U$$

Thus, the open set

$$V = W \cap W_{x_1} \cap \ldots \cap W_{x_n}$$

meets the requirements.

Using the possibility of inserting an open subset and its closure between any $K \subset U$ with K compact and U open, we inductively create opens V_r (with compact closures) indexed by rational numbers r in the interval $0 \leq r \leq 1$ such that, for $r > s$,

$$K \subset V_r \subset \overline{V}_r \subset V_s \subset \overline{V}_s \subset U$$

From any such configuration of opens we construct the desired continuous function f by

$$f(x) = \sup \{ r \text{ rational in } [0,1] : x \in V_r \} = \inf \{ r \text{ rational in } [0,1] : x \in \overline{V}_r \}$$

It is not immediate that this sup and inf are the same, but if we grant their equality then we can prove the continuity of this function $f(x)$. Indeed, the sup description expresses f as the supremum of characteristic functions of open sets, so f is at least lower semi-continuous. [1] The inf description expresses f as an infimum of characteristic functions of closed sets so is upper semi-continuous. Thus, f would be continuous.

To finish the argument, we must construct the sets V_r and prove equality of the inf and sup descriptions of the function f.

To construct the sets V_r, start by finding V_0 and V_1 such that

$$K \subset V_1 \subset \overline{V}_1 \subset V_0 \subset \overline{V}_0 \subset U$$

[1] A (real-valued) function f is lower semi-continuous when for all bounds B the set $\{ x : f(x) > B \}$ is open. The function f is upper semi-continuous when for all bounds B the set $\{ x : f(x) < B \}$ is open. It is easy to show that a sup of lower semi-continuous functions is lower semi-continuous, and an inf of upper semi-continuous functions is upper semi-continuous. As expected, a function both upper and lower semi-continuous is continuous.
Fix a well-ordering \(r_1, r_2, \ldots \) of the rationals in the open interval \((0, 1)\). Supposing that \(V_{r_1}, \ldots, V_{r_n} \) have been chosen, let \(i, j \) be indices in the range \(1, \ldots, n \) such that

\[
 r_j > r_{n+1} > r_i
\]

and \(r_j \) is the smallest among \(r_1, \ldots, r_n \) above \(r_{n+1} \), while \(r_i \) is the largest among \(r_1, \ldots, r_n \) below \(r_{n+1} \). Using the first observation of this argument, find \(V_{r_{n+1}} \) such that

\[
 V_{r_j} \subset \overline{V}_{r_j} \subset V_{r_{n+1}} \subset \overline{V}_{r_{n+1}} \subset V_{r_i} \subset \overline{V}_{r_i}
\]

This constructs the nested family of opens.

Let \(f(x) \) be the sup and \(g(x) \) the inf of the characteristic functions above. If \(f(x) > g(x) \) then there are \(r > s \) such that \(x \in V_r \) and \(x \notin V_s \). But \(r > s \) implies that \(V_r \subset \overline{V}_s \), so this cannot happen. If \(g(x) > f(x) \), then there are rationals \(r > s \) such that

\[
 g(x) > r > s > f(x)
\]

Then \(s > f(x) \) implies that \(x \notin V_s \), and \(r < g(x) \) implies \(x \in V_r \). But \(V_r \subset \overline{V}_s \), contradiction. Thus, \(f(x) = g(x) \).

7. Appendix: historical notes

To a considerable degree, our first section follows the outline in Appendix A1 of S. Lang’s \(SL_2(\mathbb{R}) \). There, on page 362, it is noted that F. Riesz first used a positivity argument to get a form of the spectral theorem, but the sequel of that argument aimed toward an integral form of a spectral decomposition, while, in contrast, a 1950 seminar of J. von Neumann followed the outline of that appendix and section one here.