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1. Banach spaces Ck[a, b]

We give the vector space Ck[a, b] of k-times continuously differentiable functions on an interval [a, b] a metric
which makes it complete. Mere pointwise limits of continuous functions easily fail to be continuous. First
recall the standard

[1.1] Claim: The set Co(K) of complex-valued continuous functions on a compact set K is complete with
the metric |f − g|Co , with the Co-norm |f |Co = supx∈K |f(x)|.

Proof: This is a typical three-epsilon argument. To show that a Cauchy sequence {fi} of continuous
functions has a pointwise limit which is a continuous function, first argue that fi has a pointwise limit at every
x ∈ K. Given ε > 0, choose N large enough such that |fi− fj | < ε for all i, j ≥ N . Then |fi(x)− fj(x)| < ε
for any x in K. Thus, the sequence of values fi(x) is a Cauchy sequence of complex numbers, so has a limit
f(x). Further, given ε′ > 0 choose j ≥ N sufficiently large such that |fj(x)− f(x)| < ε′. For i ≥ N

|fi(x)− f(x)| ≤ |fi(x)− fj(x)|+ |fj(x)− f(x)| < ε+ ε′

This is true for every positive ε′, so |fi(x) − f(x)| ≤ ε for every x in K. That is, the pointwise limit is
approached uniformly in x ∈ [a, b].

To prove that f(x) is continuous, for ε > 0, take N be large enough so that |fi − fj | < ε for all i, j ≥ N .
From the previous paragraph |fi(x)−f(x)| ≤ ε for every x and for i ≥ N . Fix i ≥ N and x ∈ K, and choose
a small enough neigborhood U of x such that |fi(x)− fi(y)| < ε for any y in U . Then

|f(x)− f(y)| ≤ |f(x)− fi(x)|+ |fi(x)− fi(y)|+ |f(y)− fi(y)| ≤ ε+ |fi(x)− fi(y)|+ ε < ε+ ε+ ε

Thus, the pointwise limit f is continuous at every x in U . ///

Unsurprisingly, but significantly:

[1.2] Claim: For x ∈ [a, b], the evaluation map f → f(x) is a continuous linear functional on Co[a, b].

Proof: For |f − g|Co < ε, we have

|f(x)− g(x)| ≤ |f − g|Co < ε

proving the continuity. ///
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As usual, a real-valued or complex-valued function f on a closed interval [a, b] ⊂ R is continuously
differentiable when it has a derivative which is itself a continuous function. That is, the limit

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

exists for all x ∈ [a, b], and the function f ′(x) is in Co[a, b]. Let Ck[a, b] be the collection of k-times
continuously differentiable functions on [a, b], with the Ck-norm

|f |Ck =
∑

0≤i≤k

sup
x∈[a,b]

|f (i)(x)| =
∑

0≤i≤k

|f (i)|∞

where f (i) is the ith derivative of f . The associated metric on Ck[a, b] is |f − g|Ck .

Similar to the assertion about evaluation on Co[a, b],

[1.3] Claim: For x ∈ [a, b] and 0 ≤ j ≤ k, the evaluation map f → f (j)(x) is a continuous linear functional
on Ck[a, b].

Proof: For |f − g|Ck < ε,
|f (j)(x)− g(j)(x)| ≤ |f − g|Ck < ε

proving the continuity. ///

We see that Ck[a, b] is a Banach space:

[1.4] Theorem: The normed metric space Ck[a, b] is complete.

Proof: For a Cauchy sequence {fi} in Ck[a, b], all the pointwise limits limi f
(j)
i (x) of j-fold derivatives exist

for 0 ≤ j ≤ k, and are uniformly continuous. The issue is to show that limi f
(j) is differentiable, with

derivative limi f
(j+1). It suffices to show that, for a Cauchy sequence fn in C1[a, b], with pointwise limits

f(x) = limn fn(x) and g(x) = limn f
′
n(x) we have g = f ′. By the fundamental theorem of calculus, for any

index i,

fi(x)− fi(a) =

∫ x

a

f ′i(t) dt

Since the f ′i uniformly approach g, given ε > 0 there is io such that |f ′i(t)− g(t)| < ε for i ≥ io and for all t
in the interval, so for such i∣∣∣ ∫ x

a

f ′i(t) dt−
∫ x

a

g(t) dt
∣∣∣ ≤ ∫ x

a

|f ′i(t)− g(t)| dt ≤ ε · |x− a| −→ 0

Thus,

lim
i
fi(x)− fi(a) = lim

i

∫ x

a

f ′i(t) dt =

∫ x

a

g(t) dt

from which f ′ = g. ///

By design, we have

[1.5] Theorem: The map d
dx : Ck[a, b]→ Ck−1[a, b] is continuous.

Proof: As usual, for a linear map T : V → W , by linearity Tv − Tv′ = T (v − v′) it suffices to check
continuity at 0. For Banach spaces the homogeneity |σ · v|V = |α| · |v|V shows that continuity is equivalent
to existence of a constant B such that |Tv|W ≤ B · |v|V for v ∈ V . Then

| d
dx
f |Ck−1 =

∑
0≤i≤k−1

sup
x∈[a,b]

|( df
dx

)(i)(x)| =
∑

1≤i≤k

sup
x∈[a,b]

|f (i)(x)| ≤ 1 · |f |Ck
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as desired. ///

2. Non-Banach limit C∞[a, b] of Banach spaces Ck[a, b]

The space C∞[a, b] of infinitely differentiable complex-valued functions on a (finite) interval [a, b] in R is

not a Banach space. [1] Nevertheless, the topology is completely determined by its relation to the Banach
spaces Ck[a, b]. That is, there is a unique reasonable topology on C∞[a, b]. After explaining and proving
this uniqueness, we also show that this topology is complete metric.

This function space can be presented as

C∞[a, b] =
⋂
k≥0

Ck[a, b]

and we reasonably require that whatever topology C∞[a, b] should have, each inclusion C∞[a, b] −→ Ck[a, b]
is continuous.

At the same time, given a family of continuous linear maps Z → Ck[a, b] from a vector space Z in some
reasonable class (specified in the next section), with the compatibility condition of giving commutative
diagrams

Ck[a, b]
⊂ // Ck−1[a, b]

Z

ffMMMMMMMMMMM

OO

the image of Z actually lies in the intersection C∞[a, b]. Thus, diagrammatically, for every family of
compatible maps Z → Ck[a, b], there is a unique Z → C∞[a, b] fitting into a commutative diagram

C∞[a, b]
** ((

. . . // C1[a, b] // Co[a, b]

Z

;;w
w

w
w

w

∀
44jjjjjjjjjj

∃!

cc

We require that this induced map Z → C∞[a, b] is continuous.

When we know that these conditions are met, we would say that C∞[a, b] is the (projective) limit of the
spaces Ck[a, b], written

C∞[a, b] = lim
k
Ck[a, b]

with implicit reference to the inclusions Ck+1[a, b]→ Ck[a, b] and C∞[a, b]→ Ck[a, b].

[2.1] Claim: Up to unique isomorphism, there exists at most one topology on C∞[a, b] such that to every
compatible family of continuous linear maps Z → Ck[a, b] from a topological vector space Z there is a unique
continuous linear Z → C∞[a, b] fitting into a commutative diagram as just above.

Proof: Let X,Y be C∞[a, b] with two topologies fitting into such diagrams, and show X ≈ Y , and for a
unique isomorphism. First, claim that the identity map idX : X → X is the only map ϕ : X → X fitting
into a commutative diagram

[1] It is not essential to prove that there is no reasonable Banach space structure on C∞[a, b], but this can be readily

proven in a suitable context.
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X
** ''

. . . // C1[a, b] // Co[a, b]

X

ϕ

OO

44 77
. . . // C1[a, b] // Co[a, b]

Indeed, given a compatible family of maps X → Ck[a, b], there is unique ϕ fitting into

X
** ''

. . . // C1[a, b] // Co[a, b]

X

;;w
w

w
w

w

∀
44jjjjjjjjjj

ϕ

``

Since the identity map idX fits, necessarily ϕ = idX . Similarly, given the compatible family of inclusions
Y → Ck[a, b], there is unique f : Y → X fitting into

X
** ''

. . . // C1[a, b] // Co[a, b]

Y

;;wwwwwwwww

44jjjjjjjjjjjjjjjjjjj
f

``

Similarly, given the compatible family of inclusions X → Ck[a, b], there is unique g : X → Y fitting into

Y
** ''

. . . // C1[a, b] // Co[a, b]

X

;;wwwwwwwww

44jjjjjjjjjjjjjjjjjjj
g

__

Then f ◦ g : X → X fits into a diagram

X
** ''

. . . // C1[a, b] // Co[a, b]

X

;;wwwwwwwww

44jjjjjjjjjjjjjjjjjjj
f◦g

``

Therefore, f ◦ g = idX . Similarly, g ◦ f = idY . That is, f, g are mutual inverses, so are isomorphisms of
topological vector spaces. ///

Existence of a topology on C∞[a, b] satisfying the condition above will be proven by identifying C∞[a, b] as
the obvious diagonal closed subspace of the topological product of the limitands Ck[a, b]:

C∞[a, b] = {{fk : fk ∈ Ck[a, b]} : fk = fk+1 for all k}

An arbitrary product of topological spaces Xα for α in an index set A is a topological space X with
(projections) pα : X → Xα, such that every family fα : Z → Xα of maps from any other topological
space Z factors through the pα uniquely, in the sense that there is a unique f : Z → X such that fα = pα ◦ f
for all α. Pictorially, all triangles commute in the diagram

Z

fβ
++XXXXXXXXXXXXXXXX

fα
((P

PPPPPPP
f // X

pβ

!!B
BB

BB
BB

B
pα

}}||
||
||
||

. . . Xα . . . Xβ . . .
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A similar argument to that for uniqueness of limits proves uniqueness of products up to unique isomorphism.
Construction of products is by putting the usual product topology with basis consisting of products

∏
α Yα

with Yα = Xα for all but finitely-many indices, on the Cartesian product of the sets Xα, whose existence we
grant ourselves. Proof that this usual is a product amounts to unwinding the definitions. By uniqueness,
in particular, despite the plausibility of the box topology on the product, it cannot function as a product
topology since it differs from the standard product topology in general.

[2.2] Claim: Giving the diagonal copy of C∞[a, b] inside
∏
k C

k[a, b] the subspace topology yields a
(projective) limit topology.

Proof: The projection maps pk :
∏
j C

j [a, b] → Ck[a, b] from the whole product to the factors Ck[a, b]
are continuous, so their restrictions to the diagonally imbedded C∞[a, b] are continuous. Further, letting
ik : Ck[a, b] → Ck−1[a, b] be the inclusion, on that diagonal copy of C∞[a, b] we have ik ◦ pk = pk−1 as
required.

On the other hand, any family of maps ϕk : Z → Ck[a, b] induces a map ϕ̃ : Z →
∏
Ck[a, b] such that

pk ◦ ϕ̃ = ϕk, by the property of the product. Compatibility ik ◦ ϕk = ϕk−1 implies that the image of ϕ̃ is
inside the diagonal, that is, inside the copy of C∞[a, b]. ///

A countable product of metric spaces Xk with metrics dk has no canonical single metric, but is metrizable.
One of many topologically equivalent metrics is the usual

d({xk}, {yk}) =

∞∑
k=0

2−k
dk(xk − yk)

dk(xk − yk) + 1

When the metric spaces Xk are complete, the product is complete. A closed subspace of a complete metrizable
space is complete metrizable, so we have

[2.3] Corollary: C∞[a, b] is complete metrizable. ///

Abstracting the above, for a (not necessarily countable) family

. . .
ϕ2 // B1

ϕ1 // Bo

of Banach spaces with continuous linear transition maps as indicated, not recessarily requiring the continuous
linear maps to be injective (or surjective), a (projective) limit limiBi is a topological vector space with
continuous linear maps limiBi → Bj such that, for every compatible family of continuous linear maps
Z → Bi there is unique continuous linear Z → limiBi fitting into

limiBi
!!   

. . .
ϕ2 // B1

ϕ1 // Bo

Z

==|
|

|
|

66mmmmmmmm

cc

The same uniqueness proof as above shows that there is at most one topological vector space limiBi. For
existence by construction, the earlier argument needs only minor adjustment. The conclusion of complete
metrizability would hold when the family is countable.

Before declaring C∞[a, b] to be a Fréchet space, we must certify that it is locally convex, in the sense that
every point has a local basis of convex opens. Normed spaces are immediately locally convex, because open
balls are convex: for 0 ≤ t ≤ 1 and x, y in the ε-ball at 0 in a normed space,

|tx+ (1− t)y| ≤ |tx|+ |(1− t)y| ≤ t|x|+ (1− t)|y| < t · ε+ (1− t) · ε = ε

5



Paul Garrett: Topological vector spaces (November 28, 2016)

Product topologies of locally convex vectorspaces are locally convex, from the construction of the product.
The construction of the limit as the diagonal in the product, with the subspace topology, shows that it is
locally convex. In particular, countable limits of Banach spaces are locally convex, hence, are Fréchet. All
spaces of practical interest are locally convex for simple reasons, so demonstrating local convexity is rarely
interesting.

[2.4] Theorem: d
dx : C∞[a, b]→ C∞[a, b] is continuous.

Proof: In fact, the differentiation operator is characterized via the expression of C∞[a, b] as a limit. We
already know that differentiation d/dx gives a continuous map Ck[a, b] → Ck−1[a, b]. Differentiation is
compatible with the inclusions among the Ck[a, b]. Thus, we have a commutative diagram

C∞[a, b]
)) **

. . . Ck[a, b] // Ck−1[a, b] // . . .

C∞[a, b]
55 55

. . . Ck[a, b] //

d
dx

99rrrrrrrrrr
Ck−1[a, b] //

d
dx

::vvvvvvvvvv
. . .

Composing the projections with d/dx gives (dashed) induced maps from C∞[a, b] to the limitands, inducing
a unique (dotted) continuous linear map to the limit, as in

C∞[a, b]
)) **

. . . Ck[a, b] // Ck−1[a, b] // . . .

C∞[a, b]

55kkkkkkkk

33gggggggggggggg

22eeeeeeeeeeeeeeeeeeeee

d
dx

OO

55 55
. . . Ck[a, b] //

99rrrrrrrrrr
Ck−1[a, b] //

::vvvvvvvvvv
. . .

This proves the continuity of differentiation in the limit topology. ///

In a slightly different vein, we have

[2.5] Claim: For all x ∈ [a, b] and for all non-negative integers k, the evaluation map f → f (k)(x) is a
continuous linear map C∞[a, b]→ C.

Proof: The inclusion C∞[a, b]→ Ck[a, b] is continuous, and the evaluation of the kth derivative is continuous.
///

3. Sufficient notion of topological vector space

To describe a (projective) limit of Hilbert or Banach spaces by characterizing behavior in relation to all
topological vectorspaces requires specification of what a topological vectorspace should be.

A topological vector space V (over C) is a C-vectorspace V with a topology on V in which points are closed,
and so that scalar multiplication

x× v −→ xv (for x ∈ k and v ∈ V )

and vector addition
v × w −→ v + w (for v, w ∈ V )

are continuous. For subsets X,Y of V , let

X + Y = {x+ y : x ∈ X, y ∈ Y }

6
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and
−X = {−x : x ∈ X}

The following trick is elementary, but indispensable. Given an open neighborhood U of 0 in a topological
vectorspace V , continuity of vector addition yields an open neighborhood U ′ of 0 such that

U ′ + U ′ ⊂ U

Since 0 ∈ U ′, necessarily U ′ ⊂ U . This can be repeated to give, for any positive integer n, an open
neighborhood Un of 0 such that

Un + . . .+ Un︸ ︷︷ ︸
n

⊂ U

In a similar vein, for fixed v ∈ V the map V → V by x → x + v is a homeomorphism, being invertible by
the obvious x→ x− v. Thus, the open neighborhoods of v are of the form v + U for open neighborhoods U
of 0. In particular, a local basis at 0 gives the topology on a topological vectorspace.

[3.1] Lemma: Given a compact subset K of a topological vectorspace V and a closed subset C of V not
meeting K, there is an open neighborhood U of 0 in V such that

closure(K + U) ∩ (C + U) = φ

Proof: Since C is closed, for x ∈ K there is a neighborhood Ux of 0 such that the neighborhood x+ Ux of
x does not meet C. By continuity of vector addition

V × V × V → V by v1 × v2 × v3 → v1 + v2 + v3

there is a smaller open neighborhood Nx of 0 so that

Nx +Nx +Nx ⊂ Ux

By replacing Nx by Nx ∩ −Nx, which is still an open neighborhood of 0, suppose that Nx is symmetric in
the sense that Nx = −Nx.

Using this symmetry,
(x+Nx +Nx) ∩ (C +Nx) = φ

Since K is compact, there are finitely-many x1, . . . , xn such that

K ⊂ (x1 +Nx1) ∪ . . . ∪ (xn +Nxn)

Let U =
⋂
i Nxi . Since the intersection is finite, U is open. Then

K + U ⊂
⋃

i=1,...,n

(xi +Nxi + U) ⊂
⋃

i=1,...,n

(xi +Nxi +Nxi)

These sets do not meet C + U , by construction, since U ⊂ Nxi for all i. Finally, since C + U is a union of
opens y + U for y ∈ C, it is open, so even the closure of K + U does not meet C + U . ///

Conveniently, Hausdorff-ness of topological vectorspaces follows from the weaker assumption that points are
closed:

[3.2] Corollary: A topological vectorspace is Hausdorff.

Proof: Take K = {x} and C = {y} in the lemma. ///
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[3.3] Corollary: The topological closure Ē of a subset E of a topological vectorspace V can be expressed as

Ē =
⋂
U

(E + U) (where U ranges over a local basis at 0)

Proof: In the lemma, take K = {x} and C = Ē for a point x of V not in C. Then we obtain an open
neighborhood U of 0 so that x+U does not meet Ē+U . The latter contains E+U , so certainly x 6∈ E+U .
That is, for x not in the closure, there is an open U containing 0 so that x 6∈ E + U . ///

As usual, for two topological vectorspaces V,W over C, a function f : V −→ W is (k-)linear when
f(αx + βy) = αf(x) + βf(y) for all α, β ∈ k and x, y ∈ V . Almost without exception we care about
continuous linear maps, meaning linear maps continuous for the topologies on V,W . As expected, the kernel
ker f of a linear map is

ker f = {v ∈ V : f(v) = 0}

Being the inverse image of a closed set by a continuous map, the kernel is a closed subspace of V .

For a closed subspace H of a topological vectorspace V , the quotient V/H is characterized as topological
vectorspace with linear quotient map q : V → V/H through which any continuous f : V →W with ker f ⊃ H
factors, in the sense that there is a unique continuous linear f : V/H →W giving a commutative diagram

V/H
f

""D
D

D
D

V
f
//

q

OO

W

Uniqueness of the quotient q : V → V/H, up to unique isomorphism, follows by the usual categorical
arguments, as with limits and products above. The existence of the quotient is proven by the usual
construction of V/H as the collection of cosets v + H, with q given as usual by q : v −→ v + H. We
verify that this construction succeeds in the proposition below.

The quotient topology on V/H is the finest topology such that the quotient map q : V → V/H is continuous,
namely, a subset E of V/H is open if and only if q−1(E) is open.

For non-closed subspaces H, the quotient topology on the collection of cosets {v+H} would not be Hausdorff.
Thus, the proper categorical notion of topological vectorspace quotient, by non-closed subspace, would
produce the collection of cosets v +H for the closure H of H.

[3.4] Claim: For a closed subspace W of a topological vectorspace V , the collection Q = {v +W : v ∈ V }
of cosets by W with map q(v) = v +W is a topological vectorspace and q is a quotient map.

Proof: The algebraic quotient Q = V/W of cosets v+W and q(v) = v+W constructs a vectorspace quotient
without any topological hypotheses on W . Since W is closed, and since vector addition is a homeomorphism,
v+W is closed as well. Thus, its complement V − (v+W ) is open, so q(V − (v+W )) is open, by definition
of the quotient topology. Thus, the complement

q(v) = v +W = q(v +W ) = V/W − q(V − (v +W ))

of the open set q(V − (v +W )) is closed. ///

Unlike general topological quotient maps,

[3.5] Claim: For a closed subspace H of a topological vector space V , the quotient map q : V → V/H is
open, that is, carries open sets to open sets.
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Proof: For U open in V ,

q−1(q(U)) = q−1(U +H) = U +H =
⋃
h∈H

h+ U

This is a union of opens. ///

[3.6] Corollary: For f : V → X a linear map with a closed subspace W of V contained in ker f , and f̄ the
induced map f̄ : V/W → X defined by f̄(v +W ) = f(v), f is continuous if and only if f̄ is continuous.

Proof: Certainly if f̄ is continuous then f = f̄ ◦ q is continuous. The converse follows from the fact that q
is open. ///

This proves that the construction of the quotient by cosets succeeds in producing a quotient: a continuous
linear map f : V → X factors through any quotient V/W for W a closed subspace contained in the kernel of
f .

The notions of balanced subset, absorbing subset, directed set, Cauchy net, and completeness are necessary:

A subset E of V is balanced when xE ⊂ E for every x ∈ k with |x| ≤ 1.

[3.7] Lemma: Every neighborhood u of 0 in a topological vectorspace V over k contains a balanced
neighborhood N of 0.

Proof: By continuity of scalar multiplication, there is ε > 0 and a neighborhood U ′ of 0 ∈ V so that if
|x| < ε and v ∈ U ′ then xv ∈ U . Since C is not discrete, there is xo ∈ k with 0 < |xo| < ε. Since scalar
multiplication by a non-zero element is a homeomorphism, xoU

′ is a neighborhood of 0 and xoU
′ ⊂ U . Put

N =
⋃
|y|≤1

yxoU
′

For |x| ≤ 1, |xy| ≤ |y| ≤ 1, so

xN =
⋃
|y|≤1

x(yxoU
′) ⊂

⋃
|y|≤1

yxoU
′ = N

producing the desired N . ///

A subset E of vectorspace V over k is absorbing when for every v ∈ V there is to ∈ R so that v ∈ αE for
every α ∈ k so that |α| ≥ to.

[3.8] Lemma: Every neighborhood U of 0 in a topological vectorspace is absorbing.

Proof: We may shrink U to assume U is balanced. By continuity of the map k → V given by α→ αv, there
is ε > 0 so that |α| < ε implies αv ∈ U . By the non-discreteness of k, there is non-zero α ∈ k satisfying any
such inequality. Then v ∈ α−1U , as desired. ///

A poset S,≤ is a partially ordered set. A directed set is a poset S such that, for any two elements s, t ∈ S,
there is z ∈ S so that z ≥ s and z ≥ t.

A net in V is a subset {xs : s ∈ S} of V indexed by a directed set S. A net {xs : s ∈ S} in a topological
vectorspace V is a Cauchy net if, for every neighborhood U of 0 in V , there is an index so so that for s, t ≥ so
we have xs − xt ∈ U . A net {xs : s ∈ S} is convergent if there is x ∈ V so that, for every neighborhood U
of 0 in V there is an index so so that for s ≥ so we have x − xs ∈ U . Since points are closed, there can be
at most one point to which a net converges. Thus, a convergent net is Cauchy. Oppositely, a topological
vectorspace is complete if every Cauchy net is convergent.

9



Paul Garrett: Topological vector spaces (November 28, 2016)

[3.9] Lemma: Let Y be a vector subspace of a topological vector space X, complete when given the subspace
topology from X. Then Y is a closed subset of X.

Proof: Let x ∈ X be in the closure of Y . Let S be a local basis of opens at 0, where we take the partial
ordering so that U ≥ U ′ if and only if U ⊂ U ′. For each U ∈ S choose yU ∈ (x + U) ∩ Y . The net
{yU : U ∈ S} converges to x, so is Cauchy. It must converge to a point in Y , so by uniqueness of limits of
nets it must be that x ∈ Y . Thus, Y is closed. ///

Unfortunately, completeness as above is too strong a condition for general topological vectorspaces, beyond
Fréchet spaces. A slightly weaker version of completeness, quasi-completeness or local completeness, does
hold for most important natural spaces, as discussed below.

4. Unique vectorspace topology on Cn

Finite-dimensional topological vectorspaces, and their interactions with other topological vectorspaces, are
especially simple:

[4.1] Theorem: A finite-dimensional complex vectorspace V has just one topological vectorspace topology,
that of the product topology on Cn for n = dimV . A finite-dimensional subspace V of a topological
vectorspace W is closed. A C-linear map X → V to a finite-dimensional space V is continuous if and only
if the kernel is closed.

Proof: The argument is by induction. First treat the one-dimensional situation:

[4.2] Claim: For a one-dimensional topological vectorspace V with basis e the map C→ V by x→ xe is a
homeomorphism.

Proof: Since scalar multiplication is continuous, we need only show that the map is open. We need only do
this at 0, since translation addresses other points. Given ε > 0, by the non-discreteness of C there is xo in
C so that 0 < |xo| < ε. Since V is Hausdorff, there is a neighborhood U of 0 so that xoe 6∈ U . Shrink U so
it is balanced. Take x ∈ k so that xe ∈ U . For |x| ≥ |xo|, |xox−1| ≤ 1, so

xoe = (xox
−1)(xe) ∈ U

by balanced-ness of U , contradiction. Thus, xe ∈ U implies that |x| < |xo| < ε. ///

[4.3] Corollary: For fixed xo ∈ C, a not-identically-zero C-linear C-valued function f on V is continuous if
and only if the affine hyperplane H = {v ∈ V : f(v) = xo} is closed in V .

Proof: Certainly if f is continuous then H is closed. For the converse, consider only the case xo = 0, since
translations (vector additions) are homeomorphisms of V to itself.

For vo with f(vo) 6= 0 and for any other v ∈ V

f(v − f(v)f(vo)
−1vo) = f(v)− f(v)f(vo)

−1f(vo) = 0

Thus, V/H is one-dimensional. The induced C-linear map f̄ : V/H → k so that f = f̄ ◦ q, that is,
f̄(v +H) = f(v), is a homeomorphism to C, by the previous result, so f is continuous. ///

For the theorem, for uniqueness of the topology it suffices to prove that for any C-basis e1, . . . , en for V , the
map C× . . .× C −→ V by

(x1, . . . , xn) −→ x1e1 + . . .+ xnen

is a homeomorphism. Prove this by induction on the dimension n, that is, on the number of generators
for V as a free C-module. The case n = 1 was treated. Since C is complete, the lemma above asserting
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the closed-ness of complete subspaces shows that any one-dimensional subspace is closed. For n > 1, let
H = Ce1 + . . . + Cen−1. By induction, H is closed in V , so the quotient q : V → V/H is constructed as
expected, as the set of cosets v + H. The space V/H is a one-dimensional topological vectorspace over C,
with basis q(en). By induction, φ : xq(en) = q(xen) −→ x is a homeomorphism V/H → C.

Likewise, Cen is a closed subspace and we have the quotient map

q′ : V −→ V/Cen

The image has basis q′(e1), . . . , q′(en−1), and by induction

φ′ : x1q
′(e1) + . . .+ xn−1q

′(en−1)→ (x1, . . . , xn−1)

is a homeomorphism. By the induction hypothesis,

v −→ (φ ◦ q)(v)× (φ′ ◦ q′)(v)

is continuous to Cn−1 × C ≈ Cn. On the other hand, by the continuity of scalar multiplication and vector
addition,

Cn −→ V by x1 × . . .× xn −→ x1e1 + . . .+ xnen

is continuous. These two maps are mutual inverses, certifying the homeomorphism.

Thus, a n-dimensional subspace is homeomorphic to Cn with its product topology, so is complete, since a
finite product of complete spaces is complete. By the closed-ness of complete subspaces, it is closed.

Continuity of a linear map f : X → Cn implies that the kernel N = ker f is closed. On the other hand,
for N closed, the set of cosets x+N constructs a quotient, and is a topological vectorspace of dimension at
most n. Therefore, the induced map f̄ : X/N → V is unavoidably continuous. Then f = f̄ ◦ q is continuous,
where q is the quotient map. This completes the induction step. ///

5. Quasi-completeness

Toward topologies in which Coc (R) and C∞c (R) could be complete, we consider first

C∞ =
⋃
n

Cn

where in : Cn ⊂ Cn+1 by in : (x1, . . . , xn)→ (x1, . . . , xn, 0). We want to topologize C∞ so that it is complete,
in a suitable sense. Above, we saw that finite-dimensional complex vectorspaces have unique vectorspace
topologies, so the only question is how to fit them together.

A countable ascending union of complete metric topological vector spaces, each a proper closed subspace
of the next, such as C∞ =

⋃
Cn, cannot be a complete metric space, because it is exactly presented as

a countable union of nowhere-dense closed subsets, contradicting the conclusion of the Baire Category
Theorem. The function spaces Coc (R) and C∞c (R) are also of this type, being the ascending unions of
spaces CoK or C∞K , continuous or smooth functions with supports inside compact K ⊂ R.

Thus, we cannot hope to give such space metric topologies for which they are complete.

Nevertheless, ascending unions are a type of colimit, just as descending intersections are a type of limit. That
is, the topology on C∞ is characterized by a universal property: for every collection of maps fn : Cn → Z
with the compatibility in ◦ fn = fn+1, there is a unique f : C∞ → Z through which all fn’s factor. That is,
given a commutative diagram

11
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C1 //
%%

((Q
QQQQQQQ C2 // ((

!!B
B

B
B . . . C∞

Z

there is a unique (dotted) map C∞ → Z giving a commutative diagram

C1 //
%%

((Q
QQQQQQQ C2 // ((

!!B
B

B
B . . . C∞

}}
Z

To argue that an ascending union X =
⋃
nXn with X1 ⊂ X2 ⊂ . . . is an example of a colimit, observe that

every x ∈ X lies in some Xn, so all values f(x) for a map f : X → Z are completely determined by the
restrictions of f to the limitands Xn. Thus, on one hand, given a compatible family fn : Xn → Z, there is
at most one compatible f : X → Z. On the other hand, a compatible family fn : Xn → Z defines a map
X → Z: given x ∈ X, take n sufficiently large so that x ∈ Xn, and define f(x) = fn(x). The compatibility
assures that it doesn’t matter which sufficiently large n we use.

For the topology of C∞, the colimit characterization has a possibly-counterintuitive consequence:

[5.1] Claim: Every linear map from the space C∞ = colimnCn with the colimit topology to any topological
vectorspace is continuous.

Proof: Given arbitrary linear f : C∞ → Z, composition with inclusion gives a compatible family of linear
maps fn : Cn → Z. From above, every linear map from a finite-dimensional space is continuous. The
collection {fn} induces a unique continuous map F : C∞ → Z such that F ◦ in : Cn → Z is the same as
f ◦ in. In general, this might not be force f = F . However, because X is an ascending union, the values of
both F and f are completely determined by their values on the limitands, and these are the same. Thus,
f = F . ///

The uniqueness argument for locally convex colimits of locally convex topological vectorspaces, that there is
at most one such topology, is identical to the uniqueness argument for limits, with arrows reversed.

[5.2] Remark: The fact that a colimit of finite-dimensional spaces has a unique canonical topology, from
which every linear map from such a colimit is continuous, is often misunderstood and misrepresented as
suggesting that there is no topology on that colimit. Again, there is a unique canonical topology, from which
every linear map is continuous.

To prove existence of colimits, just as limits are subobjects of products, colimits are quotients of coproducts,
as follows. A locally convex colimit of topological vector spaces Xα with transition maps jαβ : Xα → Xβ is
the quotient of the locally convex coproduct X of the Xα by the closure of the subspace Z spanned by vectors

jα(xα)− (jβ ◦ jαβ )(xα) (for all α < β and xα ∈ Xα)

Annihilation of these differences in the quotient forces the desired compatibility relations. Obviously,
quotients of locally convex spaces are locally convex.

Locally convex coproducts X of topological vector spaces Xα are coproducts (also called direct sums) of the

vector spaces Xα topologized by the diamond topology, described as follows. [2] For a collection Uα of convex
neighborhoods of 0 in the Xα, let

U = convex hull in X of the union of jα(Uα) (with jα : Xα → X the αth canonical map)

[2] The product topology of locally convex topological vector spaces is locally convex, whether in the category of

locally convex topological vector spaces or in the larger category of not-necessarily-locally-convex topological vector
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The diamond topology has local basis at 0 consisting of such U . Thus, it is locally convex by construction.
Closedness of points follows from the corresponding property of the Xα. Thus, existence of a locally convex
coproduct of locally convex spaces is assured by the construction.

A countable colimit of a family V1 → V2 → . . . of topological vectorspaces is a strict colimit, or strict inductive
limit, when each Vi → Vi+1 is an isomorphism to its image, and each image is closed. A strict colimit of
Fréchet spaces is called an LF-space.

Just to be sure:

[5.3] Claim: In a colimit indexed by positive integers V = colimVi, if every transition Vi → Vi+1 is injective,
then every limitand Vi injects to the colimit V . Further, the colimit is the ascending union of the limitands
Vi, suitably topologized.

Proof: In effect, the argument presents the colimit corresponding to an ascending union more directly, not
as a quotient of the coproduct, although it is convenient to already have existence of the colimit. Certainly
each Vi injects to W =

⋃
n Vn. We will give W a locally convex topology so that every inclusion Vi →W is

continuous. The universal property of the colimit produces a unique compatible map V → W , so every Vi
must inject to V itself.

Since the maps ji of Vi to the colimit V are injections, the ascending union W injects to V by j(w) = ji(w) for
any index i large enough so that w ∈ Vi. The compatibility of the maps among the Vi assures that j is well-
defined. We claim that j(W ) with the subspace topology from V , and the inclusions Vi → ji(Vi) ⊂ j(W ),
give a colimit of the Vi. Indeed for any compatible, family fi : Vi → Z and induced f : V → Z, the
restriction of f to j(W ) gives a map j(W )→ Z through which the fi factor. Thus, in fact, such a colimit is
the ascending union with a suitable topology.

Now we describe a topology on the ascending union W so that all inclusions Vi → W are continuous. Give
W a local basis {U} at 0, by taking arbitrary convex opens Ui ⊂ Vi containing 0, and letting U be the convex
hull of

⋃
i Ui. Every injection Vi → W is continuous, because the inverse image of such U ∩ Vi contains Ui,

giving continuity at 0.

To be sure that points are closed in W , given 0 6= x ∈W , we find a neighborhood of 0 in W not containing x.
Let io be the first index such that x ∈ Vio . By Hahn-Banach, there is a continuous linear functional λio on
Vio such that λio(x) 6= 0. Without loss of generality, λio(x) = 1 and |λio | = 1. Use Hahn-Banach to extend
λio to a continuous linear functional λi on Vi for every i ≥ io, with |λi| ≤ 1. λio gives a continuous linear
functional on Vi for i < io by composition with the injection Vi → Vio . Then Ui = {y ∈ Vi : |λi(y)| < 1} is
open in Vi and does not contain x, for all i. The convex hull of the ascending union

⋃
i Ui is just

⋃
i Ui itself,

so does not contain x.

We did not quite prove that this topology is exactly the colimit topology, but we will never need that fact.
///

Typical colimit topologies are not complete in the strongest possible sense (see below), but are quasi-complete,
a property sufficient for all applications. To describe quasi-completeness, we need a notion of boundedness
in general topological vectorspaces, not merely metrizable ones. A subset B of a topological vector space V
is bounded when, for every open neighborhood N of 0 there is to > 0 such that B ⊂ tN for every t ≥ to. A
space is quasi-complete when every bounded Cauchy net is convergent.

Nothing new for metric spaces:

[5.4] Lemma: Complete metric spaces are quasi-complete. In particular, Cauchy nets converge, and contain

spaces. However, coproducts behave differently: the locally convex coproduct of uncountably many locally convex

spaces is not a coproduct in the larger category of not-necessarily-locally-convex spaces. This already occurs with an

uncountable coproduct of lines.
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cofinal sequences converging to the same limit.

Proof: Let {si : i ∈ I} be a Cauchy net in X. Given a natural number n, let in ∈ I be an index such that
d(xi, xj) <

1
n for i, j ≥ in. Then {xin : n = 1, 2, . . .} is a Cauchy sequence, with limit x. Given ε > 0, let

j ≥ in be also large enough such that d(x, xj) < ε. Then

d(x, xin) ≤ d(x, xj) + d(xj , xin) < ε+
1

n
(for every ε > 0)

Thus, d(x, xin) ≤ 1
n . The original Cauchy net also converges to x: given ε > 0, for n large enough so that

ε > 1
n ,

d(xi, x) ≤ d(xi, xin) + d(xin , x) < ε+ ε (for i ≥ in)

with the strict inequality coming from d(xin , x) < ε. ///

[5.5] Theorem: A bounded subset of an LF-space X = colimnXn lies in some limitand Xn. An LF-space
is quasi-complete.

Proof: Let B be a bounded subset of X. Suppose B does not lie in any Xi. Then there is a sequence
i1, i2, . . . of positive integers and xi` in Xi` ∩B with xi` not lying in Xi`−1. Using X =

⋃
j Xi` , without loss

of generality, suppose that i` = `.

By the Hahn-Banach theorem and induction, using the closedness of Xi−1 in Xi, there are continuous linear
functionals λi on Xi’s such that λi(xi) = i and the restriction of λi to Xi−1 is λi−1, for example. Since X is
the colimit of the Xi, this collection of functionals exactly describes a unique compatible continuous linear
functional λ on X.

But λ(B) is bounded since B is bounded and λ is continuous, precluding the possibility that λ takes on all
positive integer values at the points xi of B. Thus, it could not have been that B failed to lie inside some
single Xi. The strictness of the colimit implies that B is bounded as a subset of Xi, proving one direction
of the equivalence. The other direction of the equivalence is less interesting.

Thus a bounded Cauchy net lies in some limitand Fréchet space Xn, so is convergent there, since Fréchet
spaces are complete. ///

6. Seminorms and locally convex topologies

The simplest vectorspace topologies are Banach (or Hilbert) spaces, limits of Banach spaces, and colimits
of limits of Banach spaces. By design, these descriptions facilitate proof of (quasi-) completeness. Weaker
topologies are not usually described in this fashion. For example, for a topological vectorspace V , with
(continuous) dual

V ∗ = {continuous linear maps V → C}

the weak dual topology [3] on V ∗ has a local sub-basis at 0 consisting of sets

U = Uv,ε = {λ ∈ V ∗ : |λ(v)| < ε} (for fixed v ∈ V and ε > 0)

Unless V is finite-dimensional, this topology on V ∗ is much coarser than a Banach, Fréchet, or LF-topology.
The map λ → |λ(v)| is a natural example of a seminorm. It is not a norm, because λ(v) = 0 can easily
happen.

Seminorms are a general device to describe topologies on vectorspaces. These topologies are invariably locally
convex, in the sense of having a local basis at 0 consisting of convex sets.

[3] The weak dual topology is traditionally called the weak-*-topology, but replacing * by dual is more explanatory.
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Description of a vectorspace topology by seminorms does not generally give direct information about
completeness. Nevertheless, we can prove quasi-completeness for an important class of examples, just below.

A seminorm ν on a complex vectorspace V is a real-valued function on V so that ν(x) ≥ 0 for all x ∈ V
(non-negativity), ν(αx) = |α| · ν(x) for all α ∈ C and x ∈ V (homogeneity), and ν(x+ y) ≤ ν(x) + ν(y) for
all x, y ∈ V (triangle inequality). This differs from the notion of norm only in the significant point that we
allow ν(x) = 0 for x 6= 0.

To compensate for the possibility that an individual seminorm can be 0 on a particular non-zero vector,
since we want Hausdorff topologies, we mostly care about separating families {νi : i ∈ I} of semi-norms: for
every 0 6= x ∈ V there is νi so that νi(x) 6= 0.

[6.1] Claim: The collection Φ of all finite intersections of sets

Ui,ε = {x ∈ V : νi(x) < ε} (for ε > 0 and i ∈ I)

is a local basis at 0 for a locally convex topology on V .

Proof: As expected, we intend to define a topological vector space topology on V by saying a set U is open
if and only if for every x ∈ U there is some N ∈ Φ so that x + N ⊂ U This would be the induced topology
associated to the family of seminorms.

That we have a topology does not use the hypothesis that the family of seminorms is separating, although
points will not be closed without the separating property. Arbitrary unions of sets containing sets of the
form x + N containing each point x have the same property. The empty set and the whole space V are
visibly in the collection. The least trivial issue is to check that finite intersections of such sets are again of
the same form. Looking at each point x in a given finite intersection, this amounts to checking that finite
intersections of sets in Φ are again in Φ. But Φ is defined to be the collection of all finite intersections of
sets Ui,ε, so this succeeds: we have closure under finite intersections, and a topology on V .

To verify that this topology makes V a topological vectorspace is to verify the continuity of vector addition
and continuity of scalar multiplication, and closed-ness of points. None of these verifications is difficult:

The separating property implies that for each x ∈ V the intersection of all the sets x+N with N ∈ Φ is just
x. Given y ∈ V , for each x 6= y let Ux be an open set containing x but not y. Then

U =
⋃
x6=y

Ux

is open and has complement {y}, so the singleton {y} is closed.

For continuity of vector addition, it suffices to prove that, given N ∈ Φ and given x, y ∈ V there are U,U ′ ∈ Φ
so that

(x+ U) + (y + U ′) ⊂ x+ y +N

The triangle inequality implies that for a fixed index i and for ε1, ε2 > 0

Ui,ε1 + Ui,ε2 ⊂ Ui,ε1+ε2

Then
(x+ Ui,ε1) + (y + Ui,ε2) ⊂ (x+ y) + Ui,ε1+ε2

Thus, given
N = Ui1,ε1 ∩ . . . ∩ Uin,εn

take
U = U ′ = Ui1,ε1/2 ∩ . . . ∩ Uin,εn/2
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proving continuity of vector addition.

For continuity of scalar multiplication, prove that for given α ∈ k, x ∈ V , and N ∈ Φ there are δ > 0 and
U ∈ Φ so that

(α+Bδ) · (x+ U) ⊂ αx+N (with Bδ = {β ∈ k : |α− β| < δ})

Since N is an intersection of the sub-basis sets Ui,ε, it suffices to consider the case that N is such a set.
Given α and x, for |α′ − α| < δ and for x− x′ ∈ Ui,δ,

νi(αx− α′x′) = νi((α− α′)x+ (α′(x− x′)) ≤ νi((α− α′)x) + νi(α
′(x− x′))

= |α− α′| · νi(x) + |α′| · νi(x− x′) ≤ |α− α′| · νi(x) + (|α|+ δ) · νi(x− x′)

≤ δ · (νi(x) + |α|+ δ)

Thus, for the joint continuity, take δ > 0 small enough so that

δ · (δ + νi(x) + |α|) < ε

Taking finite intersections presents no further difficulty, taking the corresponding finite intersections of the
sets Bδ and Ui,δ, finishing the demonstration that separating families of seminorms give a structure of
topological vectorspace.

Last, check that finite intersections of the sets Ui,ε are convex. Since intersections of convex sets are convex,
it suffices to check that the sets Ui,ε themselves are convex, which follows from the homogeneity and the
triangle inequality: with 0 ≤ t ≤ 1 and x, y ∈ Ui,ε,

νi(tx+ (1− t)y) ≤ νi(tx) + νi((1− t)y) = tνi(x) + (1− t)νi(y) ≤ tε+ (1− t)ε = ε

Thus, the set Ui,ε is convex. ///

The converse, that every locally convex topology is given by a family of seminorms, is more difficult:

Let U be a convex open set containing 0 in a topological vectorspace V . Every open neighborhood of 0
contains a balanced neighborhood of 0, so shrink U if necessary so it is balanced, that is, αv ∈ U for v ∈ U
and |α| ≤ 1. The Minkowski functional νU associated to U is

νU (v) = inf{t ≥ 0 : v ∈ tU}

[6.2] Claim: The Minkowski functional νU associated to a balanced convex open neighborhood U of 0 in a
topological vectorspace V is a seminorm on V , and is continuous in the topology on V .

Proof: The argument is as expected:

By continuity of scalar multiplication, every neighborhood U of 0 is absorbing, in the sense that every v ∈ V
lies inside tU for large enough |t|. Thus, the set over which we take the infimum to define the Minkowski
functional is non-empty, so the infimum exists.

Let α be a scalar, and let α = sµ with s = |α| and |µ| = 1. The balanced-ness of U implies the balanced-ness
of tU for any t ≥ 0, so for v ∈ tU also

αv ∈ αtU = sµtU = stU

From this,
{t ≥ 0 : αv ∈ αU} = |α| · {t ≥ 0 : αv ∈ tU}
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from which follows the homogeneity property required of a seminorm:

νU (αv) = |α| · νU (v) (for scalar α)

For the triangle inequality use the convexity. For v, w ∈ V and s, t > 0 such that v ∈ sU and w ∈ tU ,

v + w ∈ sU + tU = {su+ tu′ : u, u′ ∈ U}

By convexity,

su+ tu′ = (s+ t) ·
( s

s+ t
· u+

t

s+ t
· u′
)
∈ (s+ t) · U

Thus,

νU (v + w) = inf{r ≥ 0 : v + w ∈ rU} ≤ inf{r ≥ 0 : v ∈ rU}+ inf{r ≥ 0 : w ∈ rU} = νU (v) + νU (w)

Thus, the Minkowski functional νU attached to balanced, convex U is a continuous seminorm. ///

[6.3] Theorem: The topology of a locally convex topological vectorspace V is given by the collection
of seminorms obtained as Minkowski functionals νU associated to a local basis at 0 consisting of convex,
balanced opens.

Proof: The proof is straightforward, once we decide to tolerate an extravagantly large collection of
seminorms. With or without local convexity, every neighborhood of 0 contains a balanced neighborhood
of 0. Thus, a locally convex topological vectorspace has a local basis X at 0 of balanced convex open sets.

We claim that every open U ∈ X can be recovered from the corresponding seminorm νU by

U = {v ∈ V : νU (v) < 1}

Indeed, for v ∈ U , the continuity of scalar multiplication gives δ > 0 and a neighborhood N of v such that
z · v − 1 · v ∈ U for |1− z| < δ. Thus, v ∈ (1 + δ)−1 · U , so

νU (v) = inf{t ≥ 0 : v ∈ t · U} ≤ 1

1 + δ
< 1

On the other hand, for νU (v) < 1, there is t < 1 such that v ∈ tU ⊂ U , since U is convex and contains 0.
Thus, the seminorm topology is at least as fine as the original.

Oppositely, the same argument shows that every seminorm local basis open

{v ∈ V : νU (v) < t}

is simply tU . Thus, the original topology is at least as fine as the seminorm topology. ///

The comparison of descriptions of topologies is straightforward, as follows. For a seminorm ν on a topological
vectorspace V , we can form a Banach space completing with respect to the pseudo-metric ν(x − y). In
particular, unlike completions with respect to genuine metrics, there can be collapsing, so that the natural
map of V to this completion need not be an injection.

[6.4] Claim: Let V be a topological vectorspace with topology given by a (separating) family of seminorms
S = {ν}. Order the set of finite subsets of S by inclusion, and

νF =
∑
ν∈F

ν (for finite subset F of S)
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Then V with its seminorm topology is a dense subspace of the limit limF∈Φ VF of the Banach-space
completions VF with respect to νF .

Proof: As earlier, the seminorm topology is literally the subspace topology on the diagonal copy of V in
the product of the VF .

Of course, the poset of finite subsets of S is more complicated than the poset of positive integers, so such
a limit can be large. Certainly V has a natural map to every VF . Indeed, by definition of the seminorm
topology, the open sets in V are exactly the inverse images in V of open sets in the various VF .

For F ⊂ F ′, since νF ′ ≥ νF , there is a natural continuous linear map VF ′ → VF . The maps V → VF are
compatible, in the sense that the composite V → VF ′ → VF is the same as V → VF , for F ⊂ F ′. This
induces a unique continuous linear map of V to the limit of the VF .

The limit is the diagonal

D = {{vF } ∈
∏
F

VF : vF ′ → vF , for all F ′ ⊃ F} ⊂
∏
F

VF

with the subspace topology. Repeating part of an earlier argument, given a finite collection of finite subsets
F1, . . . , Fn of S, for {vF } ∈ D, take neighborhoods Ui ⊂ VFi containing vFi . Let Φ =

⋃
i Fi. The

compatibility implies that there is vΦ ∈ VΦ such that vΦ → vFi for all i. Also, there is a sufficiently
small neighborhood U of vΦ such that its image in every VFi is inside the neighborhood Ui of vFi . Since the
image of V is dense in VΦ, take v ∈ V with image inside U . Then the image of v is inside Ui for all i. Thus,
the image of V is dense in the limit. ///

Although it turns out that we only care about locally convex topological vectorspaces, there do exist complete-
metric topological vectorspaces which fail to be locally convex. This underscores the need to explicitly specify
that a Fréchet space should be locally convex. The usual example of a not-locally-convex complete-metric
space is the sequence space

`p = {x = (x1, x2, . . .) :
∑
i

|xi|p <∞}

for 0 < p < 1 with metric

d(x, y) =
∑
i

|xi − yi|p (note: no pth root, unlike the p ≥ 1 case)

This example’s interest is mostly as a counterexample to a naive presumption that local convexity is
automatic.

7. Quasi-completeness theorem

We have already seen that LF-spaces such as the space of test functions D(R) = C∞c (R), although not
complete metrizable, are quasi-complete. It is fortunate that most important topological vector spaces are
quasi-complete.

At the end of this section, we show that the fullest notion of completeness easily fails to hold, even for
quasi-complete spaces.

It is clear that closed subspaces of quasi-complete spaces are quasi-complete. Products and finite sums of
quasi-complete spaces are quasi-complete.

Let Hom(X,Y ) be the space of continuous linear functions from a topological vectorspace X to another
topological vectorspace Y . Give Hom(X,Y ) the topology by seminorms px,U where x ∈ X and U is a
convex, balanced neighborhood of 0 in Y , defined by

px,U (T ) = inf {t > 0 : Tx ∈ tU} (for T ∈ Hom(X,Y ))
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For Y = C, this gives the weak dual topology on X∗.

[7.1] Theorem: For X a Fréchet space or LF-space, and Y quasi-complete, the space Hom(X,Y ), with the
topology induced by the seminorms px,U , is quasi-complete.

Proof: Some preparation is required. A set E of continuous linear maps from one topological vectorspace
X to another topological vectorspace Y is equicontinuous when, for every neighborhood U of 0 in Y , there
is a neighborhood N of 0 in X so that T (N) ⊂ U for every T ∈ E.

[7.2] Claim: Let V be a strict colimit of a well-ordered countable collection of locally convex closed subspaces
Vi. Let Y be a locally convex topological vectorspace. Let E be a set of continuous linear maps from V
to Y . Then E is equicontinuous if and only if for each index i the collection of continuous linear maps
{T |Vi : T ∈ E} is equicontinuous.

Proof: Given a neighborhood U of 0 in Y , shrink U if necessary so that U is convex and balanced. For each
index i, let Ni be a convex, balanced neighborhood of 0 in Vi so that TNi ⊂ U for all T ∈ E. Let N be the
convex hull of the union of the Ni. By the convexity of N , still TN ⊂ U for all T ∈ E. By the construction
of the diamond topology, N is an open neighborhood of 0 in the coproduct, hence in the colimit, which is
a quotient of the coproduct. This gives the equicontinuity of E. The other direction of the implication is
easy. ///

[7.3] Claim: (Banach-Steinhaus/uniform boundedness theorem) Let X be a Fréchet space or LF-space
and Y a locally convex topological vector space. A set E of linear maps X → Y , such that every set
Ex = {Tx : T ∈ E} is bounded in Y , is equicontinuous.

Proof: First consider X Fréchet. Given a neighborhood U of 0 in Y , let A =
⋂
T∈E T

−1U . By assumption,⋃
n nA = X. By the Baire category theorem, the complete metric space X is not a countable union of

nowhere dense subsets, so at least one of the closed sets nA has non-empty interior. Since (non-zero)
scalar multiplication is a homeomorphism, A itself has non-empty interior, containing some x + N for a
neighborhood N of 0 and x ∈ A. For every T ∈ E,

TN ⊂ T{a− x : a ∈ A} ⊂ {u1 − u2 : u1, u2 ∈ U} = U − U

By continuity of addition and scalar multiplication in Y , given an open neighborhood Uo of 0, there is U
such that U − U ⊂ Uo. Thus, TN ⊂ Uo for every T ∈ E, and E is equicontinuous.

For X =
⋃
iXi an LF-space, this argument already shows that E restricted to each Xi is equicontinuous.

As in the previous claim, this gives equicontinuity on the strict colimit. ///

For the proof of the theorem on quasi-completeness, let E = {Ti : i ∈ I} be a bounded Cauchy net in
Hom(X,Y ), where I is a directed set. Of course, attempt to define the limit of the net by Tx = limi Tix.
For x ∈ X the evaluation map S → Sx from Hom(X,Y ) to Y is continuous. In fact, the topology on
Hom(X,Y ) is the coarsest with this property. Therefore, by the quasi-completeness of Y , for each fixed
x ∈ X the net Tix in Y is bounded and Cauchy, so converges to an element of Y suggestively denoted Tx.

To prove linearity of T , fix x1, x2 in X, a, b ∈ C and fix a neighborhood Uo of 0 in Y . Since T is in the
closure of E, for any open neighborhood N of 0 in Hom(X,Y ), there exists

Ti ∈ E ∩ (T +N)

In particular, for any neighborhood U of 0 in Y , take

N = {S ∈ Hom(X,Y ) : S(ax1 + bx2) ∈ U, S(x1) ∈ U, S(x2) ∈ U}

Then
T (ax1 + bx2)− aT (x1)− bT (x2)
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= (T (ax1 + bx2)− aT (x1)− bT (x2))− (Ti(ax1 + bx2)− aTi(x1)− bTi(x2))

since Ti is linear. The latter expression is

T (ax1 + bx2)− (ax1 + bx2) + a(T (x1)− Ti(x1) + b(T (x2)− Ti(x2)

∈ U + aU + bU

By choosing U small enough so that
U + aU + bU ⊂ Uo

we find that
T (ax1 + bx2)− aT (x1)− bT (x2) ∈ Uo

Since this is true for every neighborhood Uo of 0 in Y ,

T (ax1 + bx2)− aT (x1)− bT (x2) = 0

which proves linearity.

Continuity of the limit operator T exactly requires equicontinuity of E = {Tix : i ∈ I}. Indeed, for each
x ∈ X, {Tix : i ∈ I} is bounded in Y , so by Banach-Steinhaus, {Ti : i ∈ I} is equicontinuous.

Fix a neighborhood U of 0 in Y . Invoking the equicontinuity of E, let N be a small enough neighborhood of
0 in X so that T (N) ⊂ U for all T ∈ E. Let x ∈ N . Choose an index i sufficiently large so that Tx−Tix ∈ U ,
vis the definition of the topology on Hom(X,Y ). Then

Tx ∈ U + Tix ⊂ U + U

The usual rewriting, replacing U by U ′ such that U ′ + U ′ ⊂ U , shows that T is continuous. ///

Finally, we demonstrate that weak duals of reasonable topological vector spaces, such as infinite-dimensional
Hilbert, Banach, or Fréchet spaces, are definitely not complete in the strongest sense. That is, in these weak
duals there are Cauchy nets which do not converge.

[7.4] Theorem: The weak dual of a locally-convex topological vector space V is complete if and only if
every linear functional on V is continuous.

Proof: A vectorspace V can be (re-) topologized as the colimit Vinit of all its finite-dimensional subspaces.
Although the poset of finite-dimensional subspaces is much larger than the poset of positive integers, the
argument still applies: this colimit really is the ascending union with a suitable topology.

[7.5] Claim: For a locally-convex topological vector space V the identity map Vinit → V is continuous.
That is, Vinit is the finest locally convex topological vector space topology on V .

Proof: Finite-dimensional topological vector spaces have unique topologies. Thus, for any finite-dimensional
vector subspace X of V the inclusion X → V is continuous with that unique topology on X. These inclusions
form a compatible family of maps to V , so by the characterization of colimit there is a unique continuous
map Vinit → V . This map is the identity on every finite-dimensional subspace, so is the identity on the
underlying set V . ///

[7.6] Claim: Every linear functional λ : Vinit → C is continuous.

Proof: The restrictions of a given linear function λ on V to finite-dimensional subspaces are compatible with
the inclusions among finite-dimensional subspaces. Every linear functional on a finite-dimensional space is
continuous, so the characterizing property of the colimit implies that λ is continuous on Vinit. ///
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[7.7] Claim: The weak dual V ∗ of a locally-convex topological vector space V injects continuously to the
limit of the finite-dimensional Banach spaces

V ∗Φ = completion of V ∗ under seminorm pΦ(λ) =
∑
v∈Φ

|λ(v)| (finite Φ ⊂ V )

and the weak dual topology is the subspace topology.

Proof: The weak dual topology on the continuous dual V ∗ of a topological vector space V is given by the
seminorms

pv(λ) = |λ(v)| (for λ ∈ V ∗ and v ∈ V )

The corresponding local basis is finite intersections

{λ ∈ V ∗ : |λ(v)| < ε, for all v ∈ Φ} (for arbitrary finite sets Φ ⊂ V )

These sets contain, and are contained in, sets of the form

{λ ∈ V ∗ :
∑
v∈Φ

|λ(v)| < ε} (for arbitrary finite sets Φ ⊂ V )

Therefore, the weak dual topology on V ∗ is also given by semi-norms

pΦ(λ) =
∑
v∈Φ

|λ(v)| (finite Φ ⊂ V )

These have the convenient feature that they form a projective family, indexed by (reversed) inclusion. Let
V ∗(Φ) be V ∗ with the pΦ-topology: this is not Hausdorff, so continuous linear maps V ∗ → V ∗(Φ) descend to
maps V ∗ → V ∗Φ to the completion V ∗Φ of V ∗ with respect to the pseudo-metric attached to pΦ. The quotient
map V ∗(Φ)→ V ∗Φ typically has a large kernel, since

dimC V
∗
Φ = cardΦ (for finite Φ ⊂ V )

The maps V ∗ → V ∗Φ are compatible with respect to (reverse) inclusion Φ ⊃ Y , so V ∗ has a natural induced
map to the limΦ V

∗
Φ . Since V separates points in V ∗, V ∗ injects to the limit. The weak topology on V ∗ is

exactly the subspace topology from that limit. ///

[7.8] Claim: The weak dual V ∗init of Vinit is the limit of the finite-dimensional Banach spaces

V ∗Φ = completion of V ∗init under seminorm pΦ(λ) =
∑
v∈Φ

|λ(v)| (finite Φ ⊂ V )

Proof: The previous proposition shows that V ∗init injects to the limit, and that the subspace topology from
the limit is the weak dual topology. On the other hand, the limit consists of linear functionals on V , without
regard to topology or continuity. Since all linear functionals are continuous on Vinit, the limit is naturally a
subspace of V ∗init. ///

Returning to the proof of the theorem, limΦ V
∗
Φ is a closed subspace of the corresponding product, so is

complete in the fullest sense. Any other locally convex topologization Vτ of V has weak dual (Vτ )∗ ⊂ (Vinit)
∗

with the subspace topology, and the image is dense in (Vinit)
∗. Thus, unless (Vτ )∗ = (Vinit)

∗, the weak dual
V ∗τ is not complete. ///
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