von Neumann density theorem

Paul Garrett <garrett@math.umn.edu>

Theorem: Let \(V \) be a Hilbert space, and \(A \) a \(\ast \)-stable C-algebra of continuous linear operators on \(V \) containing the constants. Then for any collection \(\{v_n\} \) of vectors in \(V \) with \(\sum_n |v_n|^2 < \infty \), for all \(\varepsilon > 0 \) and for all \(T \) in the double commutant \(A'' \) of \(A \) in \(\text{End}_c(V) \), there is \(x \in A \) such that

\[
\sum_n |(T - x)v_n|^2 < \varepsilon
\]

Remark: This asserts that \(A \) is dense in \(A'' \) in the ultra-strong topology on operators on \(V \), given by seminorms \(p_{\{v_n\}} \) for vectors \(v_n \) with \(\sum_n |v_n|^2 < \infty \), defined by

\[
p_{\{v_n\}}(T)^2 = \sum_n |Tv_n|^2
\]

Recall that the strong topology is given by the seminorms \(p_v \) for \(v \in V \) defined by

\[
p_v(T) = |Tv|
\]

V.S. Varadarajan has remarked that A. Weil first noted the appearance of the strong operator topology in such a circumstance. See J. Dixmier's *von Neumann algebras* for more information.

Proof: First, we claim that for each \(v \in V \)

\[
A''v \subset \overline{Av}
\]

where the overbar denotes closure in \(V \). The closure \(\overline{Av} \) is \(A \)-stable, and \(A \) is \(\ast \)-stable so the orthogonal complement to \(\overline{Av} \) is also \(A \)-stable. Thus, the orthogonal projection \(P : V \to \overline{Av} \) to it commutes with every element of \(A \): for \(v \in V \)

\[
PTv = PT(Pv + (1_V - P)v) = TPv + 0 = TPv
\]

since \(PV \) and \((1_V - P)V \) are \(T \)-stable. Then \(T \in A'' \) commutes with \(P \). Thus, as \(1_V \in A \),

\[
Tv = T \cdot 1_V v = T(Pv) = P(Tv) = P(Tv) \in \overline{Av}
\]

So there is a sequence \(a_1, a_2, \ldots \) in \(A \) such that \(a_nv \to Tv \). Thus \(A \) is dense in \(A'' \) in the strong operator topology. The argument can be enhanced to prove density of \(A \) in \(A'' \) in the ultra-strong topology, as follows.

Let \(W \) be the Hilbert space of sequences \(\{v_n : n \geq 1\} \) with \(\sum_n |v_n|^2 < \infty \). Let \(x \in A \) act diagonally on \(W \), by

\[
x^A \{v_n\} = \{xv_n\}
\]

Let \(p_n : W \to V \) be the orthogonal projection to the \(n \)-th component, and \(i_n : V \to W \) the imbedding of \(V \) at the \(n \)-th component. For \(S \in \text{End}_c(W) \) commuting with the diagonal action \(A^A \) of \(A \), for \(x \in A \)

\[
(p_n Sx^A)\{v_n\} = (p_m x^A S)\{v_n\} = (xp_m S)\{v_n\}
\]

And for \(v \in V \)

\[
(S_i n x)v = (Sx^A i_n)v = (x^A S i_n)v
\]

Thus, for all indices \(m, n \),

\[
p_m S_i n \in A'
\]

For \(T \in A'' \), we claim that the diagonal action

\[
T^A \{v_n\} = \{Tv_n\}
\]

lies in the double commutant \((A^A)'' \). It suffices to prove that for \(S \) in the commutant \((A^A)' \)

\[
p_m(ST^A - T^A S)i_n = 0 \in A'
\]

for all indices \(m, n \). Having already noted that \(p_m S_i n \) is in \(A' \),

\[
p_m ST^A i_m = (p_m S_i n)T = T(p_m S_i m) = p_n T^A S_i m
\]

as desired. Thus, by the first part of this proof, \(T^A \) can be approximated in the strong topology on \(W \) by elements of \(A^A \), so \(T \) can be approximated in the ultra-strong topology on \(V \) by elements of \(A \).

///