Solutions 7

#1 Verify that $x^3 + x + 1$ is irreducible in $(\mathbf{Z}/2)[x]$.

Since $1^3 + 1 + 0 = 1 \neq 0$ and $0^3 + 0 + 1 = 1 \neq 0$, the equation $x^3 + x + 1 = 0$ has no roots in $\mathbf{Z}/2$. By the Division Algorithm, this means that $x^3 + x + 1$ is irreducible in $(\mathbf{Z}/2)[x]$.

#2 In the field $K = (\mathbf{Z}/2)[x]/(x^2 + x + 1)$ let α be the image of x, and compute in reduced form α^5.

Compute the reduction of x^5 modulo $x^2 + x + 1$ (by dividing)

$$(x^5) = (x^3 + x^2 + 1)(x^2 + x + 1) = x + 1$$

Therefore, $\alpha^5 = \alpha + 1$.

#3 In the field $K = (\mathbf{Z}/2)[x]/(x^3 + x + 1)$ let α be the image of x, and compute in reduced form $(1 + \alpha + \alpha^2)^{-1}$.

Run the Euclidean Algorithm on $x^3 + x + 1$ and $x^2 + x + 1$:

$$
\begin{align*}
(x^3 + x + 1) &\quad -(x + 1)(x^2 + x + 1) = x \\
(x^2 + x + 1) &\quad -(x + 1)(x) = 1
\end{align*}
$$

Then, going backwards:

$$
\begin{align*}
1 &\quad = (x^2 + x + 1) - (x + 1)(x) = (x^2 + x + 1) - (x + 1)((x^3 + x + 1) - (x + 1)(x^2 + x + 1)) \\
&\quad = (x + 1)(x^3 + x + 1) + (x + 1)^2 + 1)(x^2 + x + 1) \\
&\quad = (x + 1)(x^3 + x + 1) + (x^2)(x^2 + x + 1)
\end{align*}
$$

Thus, looking at this equation modulo $x^3 + x + 1$, we see that x^2 is the multiplicative inverse of $x^2 + x + 1$ modulo $x^3 + x + 1$. That is,

$$(\alpha^2 + \alpha + 1)^{-1} = \alpha^2$$