[5.1] Verify that for a metric $d(,)$ on a space that $\delta(,) = d(,) / [1 + d(,)]$ is also a metric. The issue is the triangle inequality.

[5.2] Prove that $Z_p \cap Q$ is the localization

$$Z_{(p)} = \left\{ \frac{a}{b} \in Q : a, b \in Z, b \neq 0 \text{ mod } p \right\}$$

of Z at p (consisting of rational numbers without any factor of p in their denominators).

[5.3] Using the mapping property characterization of the completion of a metric space, show that (as with the presumed inclusion of Z_p in Q_p) the completion of a subset E of a metric space X has a natural inclusion into the completion of the larger space.

[5.4] Show that an odd integer D has a square root in Q_p if and only if it has a square root modulo 8.

[5.5] Using the exponential and logarithm functions, show that for a prime $p > 2$ the map

$$pZ_p \rightarrow 1 + pZ_p \subset Z_p^\times \quad \text{by} \quad x \mapsto e^x$$

is an isomorphism of topological groups (with group operation of multiplication in $1 + pZ_p$).

[5.6] Let $p > 2$ be prime. Show that the quotient group $Q_p^\times / (Q_p^\times)^2$ (non-zero p-adic numbers modulo squares) is a group isomorphic to $Z/2 \oplus Z/2$, and that, therefore, there are exactly 3 quadratic field extensions of Q_p.

[5.7] Show that there are exactly 7 quadratic field extensions of Q_2.

[5.8] Prove a slightly more complicated version of Hensel’s lemma, namely, that for a polynomial f with coefficients in Q_p and $x_1 \in Q_p$ such that

$$|f(x_1)|_p < |f'(x_1)|^2_p$$

prove that the recursion $x_{n+1} = x_n - f(x_n)/f'(x_n)$ gives a sequence converging to a root of $f(x) = 0$ in Q_p.

[5.9] Viewing the root-finding version of Hensel’s lemma as really just talking about linear factors of polynomials, formulate (and prove correctness of) a similar recursion (and, thereby, existence argument) for factoring a polynomial (into possibly higher degree factors) in $Q_p[x]$ if it factors modulo pZ_p.

[5.10] Determine the factorization of cyclotomic polynomials (defined recursively by)

$$\Phi_n(x) = \prod_{d|n} \frac{x^n - 1}{\Phi_d(x)}$$

(with $\Phi_1(x) = x - 1$) over Q_p. (Consider the case the p does not divide n first.)