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The real line R, being a group, is a homogeneous space in the sense that (of course) it acts transitively on
itself. The upper half-plane H is not a group itself, but is acted upon by SL2(R) (2-by-2 real matrices with
determinant 1) acting by linear fractional transformations(

a b
c d

)
(z) =

az + b

cz + d

We will see that the simplest quotient of the upper half-plane, SL2(Z)\H, is topologically a sphere with a
point missing. However, in the SL2(R)-invariant geometry, the missing point is infinitely far away, so the
shape is not a round sphere, but stretched out like a raindrop.

1. H as homogeneous space for SL2(R)

The group R acting on R or R/Z is not very different from the circle itself. Circles R/Z are groups themselves,
since Z is normal in R, unavoidable since R is abelian. In contrast, the upper half-plane

H = {z = x+ iy : y > 0} ⊂ C

does not have any reasonable group structure itself. Luckily, the group

G = SL2(R) = {
(
a b
c d

)
: real matrices with ad− bc = 1}

acts on H with the linear fractional transformation action(
a b
c d

)
(z) =

az + b

cz + d

[1.0.1] Claim: The group SL2(R) stabilizes H and acts transitively on it. [1] In particular,[
1 x
0 1

] [√
y 0

0 1√
y

]
(i) = x+ iy (for x ∈ R, y > 0)

Further, for g =

(
a b
c d

)
∈ SL2(R) and z ∈ H

Im g(z) =
Im z

|cz + d|2

[1] In fact, every holomorphic automorphism of H is given by an element of SL2(R). This follows from Schwarz’

lemma (on the disk), which allows us to deduce that an automorphism of the disk fixing 0 is a rotation.

1



Paul Garrett: Fundamental domains for SL2(Z) and Γθ (October 21, 2013)

Proof: The first formula is clear. The second formula would imply that the upper half-plane is stabilized.
Compute directly:

2i · Im(

(
a b
c d

)
(z)) =

az + b

cz + d
− az + b

cz + d
=

(az + b)(cz + d)− (az + b)(cz + d)

|cz + d|2

=
adz − bcz − bcz + adz

|cz + d|2
=

z − z
|cz + d|2

since ad− bc = 1. ///

[1.0.2] Remark: The extra information about how the imaginary part transforms will be useful in
determining a fundamental domain just below.

[1.0.3] Claim: The isotropy group in SL2(R) of the point i ∈ H is the special orthogonal group [2]

SO(2) = {g ∈ SL2(R) : g> · g = 12} = {
[

cos θ sin θ
− sin θ cos θ

]
: θ ∈ R}

Proof: For real a, b, c, d, the equation (ai + b)/(ci + d) = i gives ai + b = −c + id, so a = d and c = −b.
The determinant condition ad − bc = 1 gives a2 + b2 = 1, which we can reparametrized via trigonometric
functions as indicated. ///

[1.0.4] Corollary: We have an isomorphism of SL2(R)-spaces

SL2(R)/SO(2) ≈ H via g · SO(2)→ g(i)

That is, that map respects the action of SL2(R), in the sense that

g · (h · SO(2)) −→ g(h(i))

Proof: This is because of associativity:

g · (h · SO(2)) = (gh) · SO(2) −→ (gh)(i) = g(h(i))

giving the result. ///

[1.0.5] Remark: Proving associativity of the linear fractional transformation action directly is pretty ugly.
Instead, use the fact that linear fractional transformation action descends from linear action of GLn(C) on
CP1, via the inclusion C→ CP1 by

z −→
(
z
1

)
· C× ∈ (C2 − {0})/C× = CP1

[2] The choice of corner in which to put the − sin θ does not matter much in the larger scheme of things, and often

the opposite choice is made, but there are some reasons one might make the present choice. Still, it doesn’t really

matter.
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2. Fundamental domain for Γ = SL2(Z) on H

The simplest beginning choice of discrete subgroup Γ of G = SL2(R) is

Γ = SL2(Z) = {2-by-2 integer matrices with determinant 1}

Both for use below and to show that SL2(Z) is a large group, note:

[2.0.1] Claim: Given relatively prime integers c, d, there are integers a, b such that

(
a b
c d

)
∈ Γ.

Proof: For any integers c, d, there are integers m,n such that

greatest common divisor c, d = m · c+ n · d

Here the greatest common divisor is 1, so take a = n, b = −m, and then ad− bc = 1. ///

To be able to draw a picture of the quotient, we take an archaic [3] approach which nevertheless succeeds in
this case. First, we find a fundamental domain for Γ on H, meaning to find a nice set of representatives for
the quotient. Second, see how the edges of the fundamental domain are glued together when mapped to the
quotient Γ\H.

[2.0.2] Claim: Every Γ-orbit in H has a representative in

F = {z ∈ H : |z| ≥ 1, |Re(z)| ≤ 1

2
}

More precisely, each orbit has a unique representative in the standard fundamental domain

F = {z ∈ H : |z| > 1, −1

2
≤ Re(z) <

1

2
} ∪ {z ∈ H : |z| = 1,Re(z) ≤ 0}

[2.0.3] Remark: The fundamental domain is illustrated in the picture [... iou ...]...

Proof: From above, for

(
a b
c d

)
∈ Γ

Im

(
a b
c d

)
(z) =

Im z

|cz + d|2

The set of complex numbers cz + d is a subset of the lattice Z · z + Z ⊂ C. Since it is a discrete subgroup, it
has (at least one) smallest (in absolute value) non-zero element.

Thus, inf |cz + d| = min |cz + d| > 0, taking the infimum or minimum over relatively prime c, d, which we
have observed are exactly the lower rows of elements of Γ. Then

sup
1

|cz + d|
= max

1

|cz + d|
<∞

[3] The approach which succeeds in general is a descendant of the present argument. As usual, the modernized

argument is successful because it discards many (adroitly chosen) details, which in hindsight were inessential.
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Thus, for fixed z ∈ H,

sup Im

(
a b
c d

)
(z) = sup

Imz

|cz + d|2
= max

Imz

|cz + d|2
<∞

Thus, in each Γ-orbit there is (at least one) point z assuming the maximum value of Imz on that orbit.

Since Im

(
a b
c d

)
(z) = Imz/|cz + d|2, for z giving maximal Imz in its orbit, it must be that

|cz + d| ≥ 1

for all c, d relatively prime. Thus, for example, for d = 0 there is the inversion[
0 −1
1 0

]
(z) = −1/z

Thus, |1 · z + 0| ≥ 1, so for Imz maximal in its Γ-orbit, |z| ≥ 1.

We can adjust any z ∈ H by [
1 n
0 1

]
(z) = z + n (for n ∈ Z)

to normalize −1/2 ≤ Re(z) < 1/2.

So take |z| ≥ 1 and |Re(z)| ≤ 1/2 and show that |cz+ d| ≥ 1 for all c, d. Break z into its real and imaginary
parts z = x+ iy. Then

|cz + d|2 = (cx+ d)2 + c2y2 = c2(x2 + y2) + 2cdx+ d2 ≥ c2(x2 + y2)− |cd|+ d2

≥ c2(|z|2 − 1

4
) +

c2

4
− |cd|+ d2 ≥ c2(|z|2 − 1

4
)

Thus, for |c| ≥ 2, we have |cz + d| > 1 when |z| ≥ 1 and |x| ≤ 1/2.

For c = 0, necessarily d = ±1, and the only corresponding elements of Γ are[
±1 n

0 ±1

]
The only z’s with |z| ≥ 1 and |x| ≤ 1/2 that can be mapped to each other by such group elements are
− 1

2 + iy and 1
2 + iy. We whimsically keep the former as our chosen representative.

For c = ±1,
|cz + d|2 = 2xd+ d2 + |z|2 ≥ −|d|+ d2 + 1 ≥ 1 (for d ∈ Z)

In fact, for |x| < 1/2, there is a strict inequality

2xd+ d2 + |z|2 > −|d|+ d2 + 1 ≥ 1

so |cz + d| > 1. When |x| = 1/2, still −|d|+ d2 + 1 > 1, except for d = 0,±1.

Thus, first without worrying about strictness of the inequalities, |cz + d| ≥ 1 for |z| ≥ 1 and |x| ≤ 1/2, and
the set F contains (at least one) representative for every orbit. What remains is to eliminate duplicates.

We have already observed that the only duplicates for |z| > 1 have |x| = 1/2, and z → z + 1 maps the
x = −1/2 line to the x = 1/2 line.
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Now consider |z| = 1. For |x| < 1/2, the only cases where |cz + d| = 1 are with c = ±1 and d = 0, which
correspondes to matrices(

a b
c d

)
=

[
∗ ±1
∓1 0

]
=

[
1 n
0 1

]
·
[

0 ±1
∓1 0

]
(for some n ∈ Z)

For |z| = 1, the inversion z → −1/z maps z = x+ iy to

−1

z
= −z/|z|2 = −z = −x+ iy

Thus, for |x| < 1/2, the only one among these products that maps z back to the fundamental domain is
exactly the inversion z → −1/z. This inversion identifies the two arcs

{|z| = 1 and − 1

2
≤ x ≤ 0} {|z| = 1 and 0 ≤ x ≤ 1

2
}

Thus, we should include only one or the other of these two arcs in the strict fundamental domain.

Last, with |z| = 1 and |x| = 1/2, there are exactly four group elements modulo ±12 (the center {±12}
acts trivially) that map z to the closure of the fundamental region. These are: the identity, one of the
translations z → z±1, the inversion z → −1/z, and the composite of the translation and the inversion. That
is, in addition to the identity,[

1 1
0 1

]
,

[
0 −1
1 0

]
,

[
1 −1
0 1

]
·
[

0 −1
1 0

]
map − 1

2
+
i
√

3

2
to the boundary of F

and [
1 −1
0 1

]
,

[
0 −1
1 0

]
,

[
1 1
0 1

]
·
[

0 −1
1 0

]
map

1

2
+
i
√

3

2
to the boundary of F

Thus, in the quotient Γ\H, the identification of the sides x = ±1 creates a (topological) cyclinder, and the
identification of the two arcs on the bottom closes the bottom of the cylinder. Thus, topologically, we have
a cylinder closed at one end, which is a disk. But the non-euclidean geometry [4] (if we were to pay more
attention to details) suggests that the top of the cylinder is infinitely far away, and the radius of the cylinder
goes to 0 as one goes toward the open top end, so it is more accurate to think of the quotient Γ\H as a
raindrop shape. ///

[... iou ...] pictures

3. Inversion and translation generate SL2(Z)

[3.0.1] Claim: The inversion (long Weyl element) w =

(
0 −1
1 0

)
and translations

(
1 n
0 1

)
with n ∈ Z

generate Γ = SL2(Z).

Proof: Again use the fact that Z · z + Z is a lattice in C. In particular, there is no infinite sequence of
decreasing sizes |c1z+d1| > |c2z+d2| > . . . with integers cj , dj . Thus, there is no infinite increasing sequence
of heights

y

|c1z + d1|2
<

y

|c2z + d2|2
< . . .

[4] We will look at the non-euclidean geometry of the upper half-plane and other examples a little later.
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Since Im
(( a b

c d

)
(z)
)

=
y

|cz + d|2
, this implies that there is no infinite increasing sequence

Im(γ1z) < Im(γ2z) < . . . (for γj ∈ Γ)

This promises that the following procedure does eventually put every point z ∈ H inside the standard
fundamental domain for Γ.

Given z ∈ H, translate z to z1 satisfying |Re(z1)| ≤ 1
2 . If |z1| ≥ 1, stop: z1 is in the fundamental domain. If

|z1| < 1, apply the inversion, noting

Im
(−1

z1

)
=

Im(z1)

|z1|2
> Im(z1) (since |z1| < 1)

Continue: translate −1/z1 back to z2 in the strip. If |z2| ≥ 1, stop. If |z2| < 1, invert. Translate back to z3

in the strip, and so on. The sequence Im(z1) < Im(z2) < . . . must be finite, so the process terminates after
finitely many steps.

Thus, given γ ∈ Γ, take z in the interior of the fundamental domain, and let δ be a finite product of
inversions and integer translations so that δ−1γz is back in the fundamental domain. Since z is in the
interior, δ−1γ = ±12. Since w2 = −12, necessarily γ is expressible in terms of inversions and integer
translations. ///

[3.0.2] Remark: The number of steps require to move a given z ∈ H into the fundamental domain is not
simple to describe. This complication is visible in pictures of the tiling of the upper half-plane by images of
the fundamental domain.

4. Re-enabling the action of SL2(R)

Taking the quotient Γ\H of H by Γ = SL2(Z) obstructs the group action of SL2(R), since Γ is far from being
a normal subgroup of G.

That is, while the upper half-plane H is a homogeneous space for SL2(R), being

H ≈ SL2(R)/SO(2) (SO(2) the isotropy group of i ∈ H)

but the group SL2(R) no longer acts on

Γ\H ≈ Γ\SL2(R)/SO(2)

because since the Γ gets in the way: SL2(R) normalizes no such Γ. Thus, the SL2(R)-homogeneity is difficult
to see or use in this form.

We could have SL2(R) act on the right on SL2(Z)\H ≈ SL2(Z)\SL2(R)/SO(2) if the SO(2) weren’t in the
way. Indeed, recovery of the action of SL2(R) is a powerful argument in favor of giving up the (otherwise
appealing) complex structure on H.

5. Fundamental domain for Γθ and Γ(2)

The determination of the standard fundamental domain F for Γ(1) = SL2(Z) allows explicit determination
of fundamental domains for finite-index subgroups such as the principal congruence subgroups

Γ(N) = {
(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
=

(
1 0
0 1

)
mod N}
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by choosing coset representatives γi for Γ(N) in Γ(1), and then [5]

fundamental domain for Γ(N) =
⋃
i

γiF

It is useful that Γ(N) is exactly the kernel of the group homomorphism

SL2(Z)→ SL2(Z/N) by

(
a b
c d

)
→
(
a mod N b mod N
c mod N d mod N

)
so is normal in Γ(1).

For the important special choice [6]

Γθ = {
(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
=

(
1 0
0 1

)
mod 2 or

(
a b
c d

)
=

(
0 1
1 0

)
mod 2}

= Γ(2) ∪
(

0 −1
1 0

)
· Γ(2)

the coset-representative oriented choice of fundamental domain can be adjusted to prove the corollary that
Γθ is generated by z → −1/z and z → z + 2, as below.

[5.0.1] Remark: The following assertion holds without assuming p is prime, but all we need at the moment
is p = 2, in any case. Further, the surjectivity of SL2(Z)→ SL2(Z/2) is easy to observe directly, since, for
example, the elements(

1 0
0 1

) (
1 1
0 1

) (
1 0
1 1

) (
0 −1
1 0

) (
1 −1
1 0

) (
0 1
−1 1

)
surject to SL2(Z/2).

[5.0.2] Claim: For p prime, the natural map

SL2(Z)→ SL2(Z/p) is surjective

Proof: Let q be the quotient map Z→ Z/p. First, given u, v not both 0 in Z/p, we will find relatively prime
c, d in SL2(Z) such that qc = u and qd = v.

For v 6∈ pZ, there is 0 6= d ∈ R such that qd = v. Consider the conditions on c ∈ R

c = u mod p and c = 1 mod d

As d 6∈ pZ, by the maximality of the ideal pZ there are x ∈ Z and pm ∈ pZ such that xd + pm = 1. Let
c = xdu+ pm. From xd+ pm = 1, xd = 1 mod pm and pm = 1 mod d, so this expression for c satisfies the
two congruences conditions. In particular, qc = u, and since c = 1 mod d it must be that gcd(c, d) = 1.

[5] Since H =
⋃
γ∈Γ(1) γF , for representatives γi with Γ(1) =

⋃
i Γ(N)γi,

H =
⋃

γ∈Γ(1)

γF =
⋃

γ∈
⋃

i Γ(N)γi

γF =
⋃

γ∈Γ(N)

⋃
i

γγiF =
⋃

γ∈Γ(N)

γ

(⋃
i

γiF

)

[6] This subgroup Γθ is important because it appears in sums-of-squares problems, the simplest application of theta

series to seemingly elementary number-theory problems.
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For v = 0 in Z/p, necessarily u 6= 0, and we reverse the roles of c, d in the previous paragraph.

Thus, there are coprime c, d in Z whose images mod p are u, v. For integers s, t there exist a, b such that
gcd(s, t) = as − bt. The coprimality of c, d implies that there are a, b in R such that ad − bc = 1. That is,(
a b
c d

)
∈ SL2(Z), and (

a b
c d

)
=

(
∗ ∗
u v

)
mod p

Further adjustment to accommodate the upper row is more straightforward: Given

(
r s
u v

)
in SL2(Z/p),

and letting

(
a b
c d

)
also denote its image in SL2(Z/p),

(
r s
u v

) (
a b
c d

)−1

=

(
r s
u v

) (
d −b
−c a

)
=

(
r s
u v

) (
v −b
−u a

)
=

(
rv − su ∗
uv − vu ∗

)
=

(
1 ∗
0 ∗

)
The right-hand side is in SL2(Z/p), so, in fact, it must be of the form

(
1 t
0 1

)
, and

(
r s
u v

) (
a b
c d

)−1(
1 −t
0 1

)
=

(
1 0
0 1

)
mod p

So (
1 t
0 1

)(
a b
c d

)
=

(
r s
u v

)
mod p

giving the surjectivity. ///

[5.0.3] Claim: #SL2(Z/p) = (p2 − 1)p for prime p.

Proof: First, count GL2(Z/p). This is the number of ordered bases for the vector space (Z/p)2 over Z/p,
since an element of GL2(Z/p) sends one basis to another, is transitive on ordered bases, and g ∈ GL2(Z/p)
fixes a basis v1, v2 only for g = 12.

The first basis element v1 can be any non-zero vector in (Z/p)2, giving p2 − 1 choices. For each such choice,
the second basis element can be anything not on the Z/p-line spanned by v1, giving p2 − p choices. Thus,
#GL2(Z/p) = (p2 − 1)(p2 − p).

The determinant map surjects GL2(Z/p) → (Z/p)×, and has kernel SL2(Z), so the index of SL2(Z/p) is
#(Z/p)× = p− 1, and the cardinality is as claimed. ///

[5.0.4] Corollary: Γ(2) has six coset representatives in Γ(1):(
1 0
0 1

) (
1 1
0 1

) (
1 0
1 1

) (
0 −1
1 0

) (
1 −1
1 0

) (
0 1
−1 1

)

Proof: The index is (22 − 1)2 = 6. The six listed matrices are in SL2(Z) and are distinct mod 2. ///

[5.0.5] Corollary: Γθ has three coset representatives in Γ(1):(
1 0
0 1

) (
1 1
0 1

) (
1 0
1 1

)

Proof: The index is 3, since Γθ is index 2 above Γ(2). The three listed matrices are in SL2(Z) and are not

only distinct mod 2 but also do not differ mod Γ(2) merely by multiplication by

(
0 −1
1 0

)
. ///
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[5.0.6] Corollary: A fundamental domain for Γθ is

Fθ = {z ∈ H : |z| ≥ 1 and |Re(z)| ≤ 1}

Proof: With standard fundamental domain

F = {z ∈ H : |z| ≥ 1 and |Re(z) ≤ 1
2}

for Γ(1), the coset representatives for Γθ in Γ(1) give a fundamental domain

F ′ = F ∪
(

1 1
0 1

)
F ∪

(
1 0
1 1

)
F

for Γθ. [... iou ...] pictures! We will symmetrize this into a more easily-describable form. With hindsight,
we replace (

1 0
0 1

) (
1 1
0 1

) (
1 0
1 1

)
by (

1 0
0 1

) (
1 1
0 1

) (
1 −1
1 0

)
=

(
1 1
0 1

)(
0 −1
1 0

)
The point is that

(
1 1
0 1

)(
0 −1
1 0

)
F is understandable as a translate of the inverted F .

Move the right half of

(
1 1
0 1

)
F ∪

(
1 −1
1 0

)
F left by z → z − 2, so that the two halves are symmetric

about the imaginary axis. This produces the region claimed in the theorem. ///

[5.0.7] Corollary: Inversion z → −1/z and translation z → z + 2 generate Γθ.

Proof: Given z ∈ H, translate z by 2Z to |Re(z)| ≤ 1. If |z| ≥ 1, stop. If not, invert, and then translate
back to |Re(z)| ≤ 1. This produces a sequence of points z1, z2, . . . with

Im(z1) < Im(z2) < . . .

As earlier, Im(zn) is of the form Im(z)/|cz + d|2, and any such sequence must be finite. That is, inversion
and translation by 1Z eventually put z into the fundamental domain for Γθ.

Given γ ∈ Γθ, choose z in the interior of the fundamental region, and let δ be a composition of inversions
and translations by 2Z so that δ−1γz is back in the fundamental domain. Then δ−1γ = ±12, so γ = ±δ.
Since the inversion squares to −12, γ ∈ Γθ. ///

6. Theta series are modular forms

Generation of Γθ by inversion z → −1/z and translation z → z + 2 allows an easy proof that the simplest
theta series

θ2k(z) =
∑

m1,...,m2k

eπi(m
2
1+...+m2

2k)z

are modular forms for Γθ. Visibly,

coefficient of eπinz in θ2k(2k) = number of ways to express n = m2
1 + . . .+m2

2k
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Thus, behavior of the Fourier coefficients of θ2k(z) bears on sums of squares problems, and the fact that
these theta series are modular forms, rather than purely combinatorial objects, is the key mechanism.

For now, for simplicity, only consider 2k ∈ 8Z. The more general case will be treated later. [7]

[6.0.1] Claim: θ8k(z) is a modular form of weight 4k for Γθ. That is, for every

(
a b
c d

)
∈ Γθ

θ8k(z + 2) = (cz + d)4k · θ2k(z)

Proof: Let

j(γ, z) = cz + d (for γ =

(
a b
c d

)
)

The cocycle property
j(γδ, z) = j(γ, δz) · j(δ, z)

is directly verifiable:

j(

(
a b
c d

)
,

(
A B
C D

)
z) · j(

(
A B
C D

)
, z) = (c

Az +B

Cz + d
+ d) · (Cz +D)

= c(Az +B) + d(Cz +D) = (cA+ dC)z + (cB + dD)

while (
a b
c d

)(
A B
C D

)
=

(
∗ ∗

cA+ dC cB + dD

)
Thus, an induction on length of expression in terms of z → −1/z and z → z+ 2 would suffice: for γ, δ ∈ Γθ,
by induction

j(γδ, z)−8kθ8k(γδz) = j(δ, z)−8kj(γ, δz)−8kθ8k(γ(δz)) = j(δ, z)−8kθ8k(δz) = θ8k(z)

Thus, it suffices to prove θ8k(z + 2) = (cz + d)4k · θ2k(z) merely for the generators. For z → z + 2, each
summand in θ8k is invariant. The inversion z → −1/z is treated via Poisson summation: for z = iy with

y > 0, the Gaussian v → e−π|v|
2y on R8k has Fourier transform v → y−4ke−π|v|

2/y. By Poisson summation,

θ8k(iy) =
∑

m1,...,m8k

e−π(m2
1+...+m2

8k)y =
1

y4k

∑
m1,...,m8k

e−π(m2
1+...+m2

8k)/y =
1

y4k
θ8k(
−1

iy
)

This gives equality of two holomorphic functions, θ8k(z) and z−4kθ8k(−1
z ), on the positive imaginary axis,

so by the identity principle the equality holds throughout H. This proves the modular form condition for
z → −1/z. ///

[7] Further, harmonic theta series

θ2k,P (z) =
∑

m1,...,m2k

P (m1, . . . ,m2k) eπi(m
2
1+...+m2

2k)z

with degree d homogeneous, harmonic polynomials P in 2k variables are modular forms for Γθ of weight k+d. Among

other applications, these harmonic theta series are used in study of equidistribution of points on spheres. As usual, a

polynomial P in n variables is harmonic when it is annihilated by the Euclidean Laplacian

∆ =
∂2

∂x2
1

+ . . .+
∂2

∂x2
n
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