Dirichlet L-functions, primes in arithmetic progressions

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/

1. Dirichlet’s theorem
2. Dual groups of abelian groups
3. Appendix: slight analytic continuations

Dirichlet’s 1837 theorem combines Euler’s argument for the infinitude of primes with harmonic analysis on finite abelian groups, and subtler things, to show that there are infinitely many primes $p = \text{amod } N$ for fixed a invertible modulo fixed N.

The proof uses some analysis, in addition to then-novel algebraic ideas. The analytic idea already arose with Euler’s proof of the infinitude of primes, recalled below. Dirichlet’s new algebraic ideas isolated primes in different congruence classes modulo N.

Specifically, Dirichlet introduced the dual group, or group of characters, of a finite abelian group. This was an impetus to the development of the abstract notion of group, and of group representations, by Schur and Frobenius.

The subtle element is non-vanishing of L-functions $L(s, \chi)$ at $s = 1$. For expediency, a first proof of this nonvanishing is given in a Supplement. There are two better lines of argument for non-vanishing $L(1, \chi) \neq 0$, both giving reasons for L-functions’ non-vanishing. The simpler of the two was used by Dirichlet, expressing products of Dirichlet L-functions as zeta functions of number fields. The less simple argument is about 50 years old, and uses Eisenstein series. Both better viewpoints will be explained subsequently.

1. Dirichlet’s theorem

In addition to Euler’s observation that the analytic behavior1 of $\zeta(s)$ at $s = 1$ implied the existence of infinitely-many primes, Dirichlet found an algebraic device to focus attention on single congruence classes modulo N.

This section gives the central argument, and in doing so uncovers several issues taken up subsequently.

[1.1] Theorem: (Dirichlet) Given an integer $N > 1$ and an integer a such that $\gcd(a, N) = 1$, there are infinitely many primes p with

$$p = \text{amod } N$$

[1.2] Remark: The \gcd condition is necessary, since $\gcd(a, N) > 1$ implies there is at most a single prime p meeting the condition $p = \text{amod } n$, since any such p would be divisible by the \gcd. The point is that this obvious necessary condition is also sufficient.

[1.3] Remark: For $a = 1$, there is a simple, purely algebraic argument using cyclotomic polynomials, resembling the Euclidean argument. For general a the intelligible argument involves a little analysis.

Proof: A character modulo N is a group homomorphism

$$\chi : (\mathbb{Z}/N)^\times \rightarrow \mathbb{C}^\times$$

1 Euler’s proof uses only simple properties of $\zeta(s)$, and only of $\zeta(s)$ as a function of a real, rather than complex, variable. Given the status of complex number and complex analysis in Euler’s time, this is not surprising. It is slightly more surprising that Dirichlet’s original argument also was a real-variable argument. Still, until Riemann’s 1859 memoir there was little reason to believe that the behavior of $\zeta(s)$ off the real line played a critical role.
Given such a character, extend it by 0 to all of \(\mathbb{Z}/N \), by defining \(\chi(a) = 0 \) for \(a \) not invertible modulo \(N \). Then compose \(\chi \) with the reduction-mod-\(N \) map \(\mathbb{Z} \to \mathbb{Z}/N \) and consider \(\chi \) as a function on \(\mathbb{Z} \). Even when extended by 0 the function \(\chi \) is still multiplicative in the sense that
\[
\chi(mn) = \chi(m) \cdot \chi(n)
\]
whether or not either of the values is 0. The pulled-back-to-\(\mathbb{Z} \) version of \(\chi \), with the extension by 0, is a Dirichlet character. The trivial Dirichlet character \(\chi_0 \) modulo \(N \) is the character which takes only the value 1 (and 0).

Recall the standard cancellation trick, that applies more generally to arbitrary finite groups:
\[
\sum_{a \mod N} \chi(a) = \begin{cases}
\varphi(N) & \text{(for } \chi = \chi_0) \\
0 & \text{(otherwise)}
\end{cases}
\]
where \(\varphi \) is Euler’s totient function. Dirichlet’s dual trick is to sum over characters \(\chi \) mod \(N \) evaluated at fixed \(a \) in \((\mathbb{Z}/N)^\times \): we claim that
\[
\sum_{\chi} \chi(a) = \begin{cases}
\varphi(N) & \text{(for } a = 1 \mod N) \\
0 & \text{(otherwise)}
\end{cases}
\]
We will prove this in the next section.

Granting this, for \(b \) invertible modulo \(N \),
\[
\sum_{\chi} \chi(a)\chi(b)^{-1} = \sum_{\chi} \chi(ab^{-1}) = \begin{cases}
\varphi(N) & \text{(for } a = b \mod N) \\
0 & \text{(otherwise)}
\end{cases}
\]
Given a Dirichlet character \(\chi \) modulo \(N \), the corresponding Dirichlet \(L \)-function is
\[
L(s, \chi) = \sum_{n \geq 1} \frac{\chi(n)}{n^s}
\]
By the multiplicative property \(\chi(mn) = \chi(m)\chi(n) \), each such \(L \)-function has an Euler product expansion
\[
L(s, \chi) = \prod_{p \text{ prime, } p \nmid N} \frac{1}{1 - \chi(p) p^{-s}}
\]
proven as for \(\zeta(s) \), by expanding geometric series. Take a logarithmic derivative, as with zeta:
\[
\frac{d}{ds} \log L(s, \chi) = \sum_{p \nmid N} \frac{\chi(p)^m \log p}{p^{ms}} = \sum_{p \nmid N} \frac{\chi(p) \log p}{p^s} + \sum_{p \nmid N, m \geq 2} \frac{\chi(p)^m \log p}{p^{ms}}
\]
The second sum on the right will turn out to be subordinate to the first, so we aim our attention at the first sum, where \(m = 1 \).

To pick out the primes \(p \) with \(p = a \mod N \), use Dirichlet’s sum-over-\(\chi \) trick to obtain
\[
\sum_{\chi \mod N} \chi^{-1}(a) \cdot \frac{\chi(p) \log p}{p^s} = \begin{cases}
\varphi(N) \cdot \frac{\log p}{p^s} & \text{(for } p = a \mod N) \\
0 & \text{(otherwise)}
\end{cases}
\]
Thus,
\[
\sum_{\chi \mod N} \chi^{-1}(a) \frac{d}{ds} \log L(s, \chi) = \sum_{\chi \mod N} \chi^{-1}(a) \sum_{p \mid N, \, m \geq 1} \frac{\chi(p)^m \log p}{p^{ms}} \\
= \varphi(N) \sum_{p = \text{amod } N} \frac{\log p}{p^s} + \sum_{\chi \mod N} \chi^{-1}(a) \sum_{p \mid N, \, m \geq 2} \frac{\chi(p)^m \log p}{p^{ms}}
\]

We do not care about cancellation in the second sum. All that we need is its absolute convergence for \(\text{Re}(s) > \frac{1}{2}\), needing no subtle information about primes. Dominate the sum over primes by the corresponding sum over integers \(\geq 2\). Namely,

\[
\sum_{p \mid N, \, m \geq 2} \left| \frac{\chi(p)^m \log p}{p^{ms}} \right| \leq \sum_{n \geq 2, \, m \geq 2} \frac{\log n}{n^{m\sigma}} = \sum_{n \geq 2} \frac{(\log n)/n^{2\sigma}}{1 - n^{-\sigma}} \leq \frac{1}{1 - 2^{-\sigma}} \sum_{n \geq 2} \frac{\log n}{n^{2\sigma}}
\]

where \(\sigma = \text{Re}(s)\). This converges for \(\text{Re}(s) > \frac{1}{2}\). That is, for \(s \to 1^+\),

\[
\sum_{\chi \mod N} \chi^{-1}(a) \frac{d}{ds} \log L(s, \chi) = \varphi(N) \sum_{p = \text{amod } N} \frac{\log p}{p^s} + (\text{something continuous at } s = 1)
\]

We have isolated the primes \(p = \text{amod } N\). Thus, as Dirichlet saw, to prove the infinitude of primes \(p = \text{amod } N\) it would suffice to show that the left-hand side of the last inequality blows up at \(s = 1\). In particular, for the trivial character \(\chi_\circ \mod N\), with values

\[
\chi(b) = \begin{cases}
1 & (\text{for } \gcd(b, N) = 1) \\
0 & (\text{for } \gcd(b, N) > 1)
\end{cases}
\]

the associated \(L\)-function is essentially the zeta function, just missing the Euler factors for \(p\mid N\), namely

\[
L(s, \chi_\circ) = \zeta(s) \cdot \prod_{p \mid N} \left(1 - \frac{1}{p^s} \right)
\]

Since none of those finitely-many factors for primes dividing \(N\) is 0 at \(s = 1\), \(L(s, \chi_\circ)\) still blows up at \(s = 1\), like a non-zero constant multiple of \(1/(s - 1)\).

By contrast, we will show below that for non-trivial character \(\chi \mod N\), \(\lim_{s \to 1^+} L(s, \chi) = \text{finite}\), and

\[
\lim_{s \to 1^+} L(s, \chi) \neq 0
\]

Thus, for non-trivial character, the logarithmic derivative is finite and non-zero at \(s = 1\). Putting this all together, we will have

\[
\lim_{s \to 1^+} \sum_{\chi \mod N} \chi(a) \frac{d}{ds} \log L(s, \chi) = +\infty
\]

Then necessarily

\[
\lim_{s \to 1^+} \sum_{p = \text{amod } N} \frac{\log p}{p^s} = +\infty
\]

and there must be infinitely many primes \(p = \text{amod } N\).

[1.4] What remains to be done? The non-vanishing of the non-trivial \(L\)-functions at 1 is the crucial technical point left unfinished, and a place-holder proof appears in a Supplement. Dirichlet’s dual cancellation trick is proven in the next section, as a consequence of Fourier analysis on finite abelian groups, the latter
treated in a supplement as a corollary of finite-dimensional spectral theory. We check below that the \(L \)-functions \(L(s, \chi) \) have analytic continuations to regions including \(s = 1 \).

2. Dual groups of abelian groups

Dirichlet’s use of group characters to isolate primes in a specified congruence class modulo \(N \) was a big innovation in 1837. These ideas were predecessors of the group theory work of Frobenious and Schur 50 years later, and one of the ancestors of representation theory of groups.

The dual group or group of characters \(\hat{G} \) of a finite abelian group \(G \) is by definition

\[
\hat{G} = \{ \text{group homomorphisms } \chi : G \to \mathbb{C}^\times \}
\]

This \(\hat{G} \) is itself an abelian group under the operation on characters defined for \(g \in G \) by

\[
(\chi_1 \cdot \chi_2)(g) = \chi_1(g) \cdot \chi_2(g)
\]

There is an inner product \(\langle , \rangle \) on complex-valued functions on \(G \), given by

\[
\langle f, F \rangle = \sum_{g \in G} f(g) \cdot F(g) \quad \text{(for } f, g \text{ complex-valued on } G \text{)}
\]

Let \(L^2(G) \) refer to the space of complex-valued functions on \(G \) with this inner product.

Recall[2] the following basic result on Fourier expansions on finite abelian groups:

[2.1] **Theorem:** For a finite abelian group \(G \) with dual group \(\hat{G} \), any complex-valued function \(f \) on \(G \) has a Fourier expansion

\[
f(g) = \frac{1}{|G|} \sum_{\chi \in \hat{G}} \hat{f}(\chi) \chi(g) \quad \text{(for all } g \in G \text{)}
\]

where the Fourier coefficients \(\hat{f}(\chi) \) are

\[
\hat{f}(\chi) = \sum_{g \in G} f(g) \overline{\chi(g)} = \langle f, \chi \rangle
\]

The characters are an orthogonal basis for \(L^2(G) \). In particular, Fourier coefficients are unique. ///

[2.2] **Corollary:** Let \(G \) be a finite abelian group. For \(g \neq e \) in \(G \), there is a character \(\chi \in \hat{G} \) such that \(\chi(g) \neq 1 \). [3]

Proof: Suppose that \(\chi(g) = 1 \) for all \(\chi \in \hat{G} \). That is, \(\chi(g) = \chi(e) \) for all \(\chi \). Then, for any coefficients \(c_\chi \),

\[
\sum_\chi c_\chi \chi(e) = \sum_\chi c_\chi \chi(g)
\]

[2] Proven in a Supplement. This is really about commuting unitary operators on finite-dimensional complex vector spaces, and the main point is the spectral theorem for unitary operators, and the simultaneous diagonalization of commuting diagonal operators.

[3] This idea that characters can distinguish group elements from each other is just the tip of an iceberg.
Since every function on the group has such a Fourier expansion, this says that every function on G has the
same value at g as at e. Thus, $g = e$.

[2.3] **Corollary:** For a finite abelian group G,
\[|G| = |\hat{G}| \]

Proof: The characters form an orthogonal basis for $L^2(G)$, so the number of characters is the dimension of
$L^2(G)$, which is $|G|$.

[2.4] **Remark:** In fact, using the structure theorem for finite abelian groups, one can show that G and its
dual are isomorphic, but this isomorphism is not canonical.

[2.5] **Corollary:** *(Dual version of cancellation trick)* For g in a finite abelian group,
\[\sum_{\chi \in \hat{G}} \chi(g) = \begin{cases} |\hat{G}| & \text{(for } g = e) \\ 0 & \text{(otherwise)} \end{cases} \]

Proof: If $g = e$, then the sum counts the characters in \hat{G}. On the other hand, given $g \neq e$ in G, let χ_1 be
in \hat{G} such that $\chi_1(g) \neq 1$, from a previous corollary. The map on \hat{G}
\[\chi \rightarrow \chi_1 \cdot \chi \]
is a bijection of \hat{G} to itself, so
\[\sum_{\chi \in \hat{G}} \chi(g) = \sum_{\chi \in \hat{G}} \chi_1 \cdot \chi_1(g) = \chi_1(g) \cdot \sum_{\chi \in \hat{G}} \chi(g) \]
which gives
\[(1 - \chi_1(g)) \cdot \sum_{\chi \in \hat{G}} \chi(g) = 0 \]
Since $1 - \chi_1(g) \neq 0$, it must be that the sum is 0.

3. Appendix: slight analytic continuations

Dirichlet’s original argument did not emphasize holomorphic functions, but by now we know that discussion
of vanishing and blowing-up of functions is most clearly and simply accomplished if the functions are
meromorphic when viewed as functions of a complex variable.

For the purposes of Dirichlet’s theorem, it suffices to meromorphically continue the L-functions just a
little, to $\text{Re}(s) > 0$. This limited analytic continuation allows a simpler argument than analytic continuation
to the entire plane.

An extension of a holomorphic function to a larger region, on which it may have some poles, is called a meromorphic
continuation. There is no general methodology for proving that functions have meromorphic continuations, due in
part to the fact that, generically, functions do not have continuations beyond some natural region where they’re
defined by a convergent series or integral. Indeed, to be able to prove a meromorphic continuation result for a given
function is tantamount to proving that it has some deeper significance.
[3.1] **Claim:** The Dirichlet L-functions

$$L(s, \chi) = \sum_n \frac{\chi(n)}{n^s} = \prod_p \frac{1}{1 - \chi(p) p^{-s}}$$

have meromorphic continuations to $\text{Re}(s) > 0$. For χ non-trivial, $L(s, \chi)$ is holomorphic on that half-plane. For χ trivial, $L(s, \chi_0)$ has a simple pole at $s = 1$ and is holomorphic otherwise.

Proof: First, to treat the trivial character $\chi_0 \mod N$, recall, as already observed, that the corresponding L-function differs in an elementary way from $\zeta(s)$, namely

$$L(s, \chi_0) = \zeta(s) \prod_{p|N} \left(1 - \frac{1}{p^s} \right)$$

Thus, analytically continue $\zeta(s)$ instead of $L(s, \chi_0)$. As earlier, to analytically continue $\zeta(s)$ to $\text{Re}(s) > 0$ in an elementary way, observe that the sum for $\zeta(s)$ is fairly well approximated by

$$\zeta(s) - \frac{1}{s-1} = \sum_{n=1}^{\infty} \frac{1}{n^s} - \int_1^{\infty} \frac{dx}{x^s} = \sum_{n=1}^{\infty} \left[\frac{1}{n^s} - \frac{1}{(n+1)^{s-1}} \right]$$

Since

$$\frac{1}{n^{s-1}} - \frac{1}{(n+1)^{s-1}} = \frac{1}{n^s} + O\left(\frac{1}{n^{s+1}}\right)$$

with a uniform O-term, we obtain

$$\zeta(s) - \frac{1}{s-1} = \sum_n O\left(\frac{1}{n^{s+1}}\right) = \text{holomorphic for Re}(s) > 0$$

The obvious analytic continuation of $1/(s-1)$ allows analytic continuation of $\zeta(s)$.

A similar relatively elementary analytic continuation argument for non-trivial characters uses partial summation. That is, let $\{a_n\}$ and $\{b_n\}$ be sequences of complex numbers such that the partial sums $A_n = \sum_{i=1}^{n} a_i$ are bounded, and $b_n \to 0$. Then it is useful to rearrange (taking $A_0 = 0$ for notational convenience)

$$\sum_{n=1}^{\infty} a_n b_n = \sum_{n=1}^{\infty} (A_n - A_{n-1}) b_n = \sum_{n=0}^{\infty} A_n b_n - \sum_{n=0}^{\infty} A_n b_{n+1} = \sum_{n=0}^{\infty} A_n (b_n - b_{n+1})$$

Taking $a_n = \chi(n)$ and $b_n = 1/n^s$ gives

$$L(s, \chi) = \sum_{n=0}^{\infty} \left(\sum_{\ell=1}^{n} \chi(\ell) \right) \left(\frac{1}{n^s} - \frac{1}{(n+1)^s} \right)$$

The difference $1/n^s - 1/(n+1)^s$ is s/n^{s+1} up to higher-order terms, so this expression gives a holomorphic function for $\text{Re}(s) > 0$. ///