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Dirichlet’s 1837 theorem combines ideas from Euclid’s argument for the infinitude of primes with harmonic
analysis on finite abelian groups, and some subtler things, to show that there are infinitely many primes
p = a mod N for fixed a invertible modulo fixed N .

The most intelligible proof of this result uses a bit of analysis, in addition to some interesting algebraic ideas.
The analytic idea already arose with Euler’s proof of the infinitude of primes, which we give below. New
algebraic ideas due to Dirichlet allowed isolation of primes in different congruence classes modulo N .

Dirichlet’s result introduces the dual group, or group of characters, of a finite abelian group. This idea
was one impetus to the development of a more abstract notion of group, and also of group representations
studied by Schur and Frobenius.

The subtle element is non-vanishing of L-functions, explained below. For expediency, we first give an ugly
proof that explains little, does not apply in many interesting situations, but has few prerequisites.

There are two better lines of argument, both of which give mechanisms whereby L-functions ought not
vanish. A form of the simpler one was used by Dirichlet, expressing products of Dirichlet L-functions as zeta
functions of number fields. The less simple one is at most 50 years old, and uses Eisenstein series. Both
better viewpoints will be explained subsequently.

1. Dirichlet’s theorem

In addition to Euler’s observation that the analytic behavior [1] of ζ(s) at s = 1 implied the existence of
infinitely-many primes, Dirichlet found an algebraic device to focus attention on single congruence classes
modulo N .

This section gives the central argument, and in doing so uncovers several issues taken up in following sections.

[1.0.1] Theorem: (Dirichlet) Given an integer N > 1 and an integer a such that gcd(a,N) = 1, there are
infinitely many primes p with

p = a mod N

[1.0.2] Remark: If gcd(a,N) > 1, then there is at most one prime p meeting the condition p = a mod n,
since any such p would be divisible by the gcd. Thus, the gcd condition is necessary. The point is that this
obvious necessary condition is also sufficient.

[1] Euler’s proof uses only simple properties of ζ(s), and only of ζ(s) as a function of a real, rather than complex,

variable. Given the status of complex number and complex analysis in Euler’s time, this is not surprising. It is

slightly more surprising that Dirichlet’s original argument also was a real-variable argument, since by that time, a

hundred years later, complex analysis was well-established. Still, until Riemann’s memoir of 1857-8 there was little

reason to believe that the behavior of ζ(s) off the real line played a critical role.
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[1.0.3] Remark: For a = 1, there is a simple purely algebraic argument using cyclotomic polynomials. For
general a the intelligible argument involves a little analysis.

Proof: A character modulo N is a group homomorphism

χ : (Z/N)× −→ C×

Given such a character, extend it by 0 to all of Z/N , by defining χ(a) = 0 for a not invertible modulo N .
Then compose χ with the reduction-mod-N map Z→ Z/N and consider χ as a function on Z. Even when
extended by 0 the function χ is still multiplicative in the sense that

χ(mn) = χ(m) · χ(n)

whether or not either of the values is 0. The pulled-back-to-Z version of χ, with the extension by 0, is a
Dirichlet character. The trivial Dirichlet character χo modulo N is the character which takes only the
value 1 (and 0).

Recall the standard cancellation trick, that applies more generally to arbitrary finite groups:

∑
a mod N

χ(a) =

{
ϕ(N) (for χ = χo)

0 (otherwise)

where ϕ is Euler’s totient function. Dirichlet’s dual trick is to sum over characters χ mod N evaluated at
fixed a in (Z/N)×: we claim that

∑
χ

χ(a) =

{
ϕ(N) (for a = 1 mod N)

0 (otherwise)

We will prove this in the next section.

Granting this, for b invertible modulo N ,

∑
χ

χ(a)χ(b)−1 =
∑
χ

χ(ab−1) =

{
ϕ(N) (for a = b mod N)

0 (otherwise)

Given a Dirichlet character χ modulo N , the corresponding Dirichlet L-function is

L(s, χ) =
∑
n≥1

χ(n)

ns

By the multiplicative property χ(mn) = χ(m)χ(n), each such L-function has an Euler product expansion

L(s, χ) =
∏

p prime, p 6 |N

1

1− χ(p) p−s

proven as for ζ(s), by expanding geometric series. Take a logarithmic derivative, as with zeta:

d

ds
logL(s, χ) =

∑
p6 |N m≥1

χ(p)m log p

pms
=
∑
p 6 |N

χ(p) log p

ps
+

∑
p 6 |N, m≥2

χ(p)m log p

pms

The second sum on the right will turn out to be subordinate to the first, so we aim our attention at the first
sum, where m = 1.
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To pick out the primes p with p = a mod N , use Dirichlet’s sum-over-χ trick to obtain

∑
χ mod N

χ−1(a) · χ(p) log p

ps
=

ϕ(N) · log p

ps
(for p = a mod N)

0 (otherwise)

Thus, ∑
χ mod N

χ−1(a)
d

ds
logL(s, χ) =

∑
χ mod N

χ−1(a)
∑

p 6 |N, m≥1

χ(p)m log p

pms

= ϕ(N)
∑

p=a mod N

log p

ps
+

∑
χ mod N

χ−1(a)
∑

p 6 |N,m≥2

χ(p)m log p

pms

We do not care about cancellation in the second sum. All that we need is its absolute convergence for
Re(s) > 1

2 , needing no subtle information about primes. Dominate the sum over primes by the corresponding
sum over integers ≥ 2. Namely,

∑
p 6 |N, m≥2

∣∣∣∣χ(p)m log p

pms

∣∣∣∣ ≤ ∑
n≥2,m≥2

log n

nmσ
=
∑
n≥2

(log n)/n2σ

1− n−σ
≤ 1

1− 2−σ

∑
n≥2

log n

n2σ

where σ = Re(s). This converges for Re(s) > 1
2 . That is, for s→ 1+,

∑
χ mod N

χ−1(a)
d

ds
logL(s, χ) = ϕ(N)

∑
p=a mod N

log p

ps
+ (something continuous at s = 1)

We have isolated the primes p = a mod N . Thus, as Dirichlet saw, to prove the infinitude of primes
p = a mod N it would suffice to show that the left-hand side of the last inequality blows up at s = 1. In
particular, for the trivial character χo mod N , with values

χ(b) =

{
1 (for gcd(b,N) = 1)
0 (for gcd(b,N) > 1)

the associated L-function is essentially the zeta function, namely

L(s, χo) = ζ(s) ·
∏
p|N

(
1− 1

ps

)

Since none of those finitely-many factors for primes dividing N is 0 at s = 1, L(s, χo) still blows up at s = 1,
like a non-zero constant multiple of 1/(s− 1).

By contrast, we will show below that for non-trivial character χ mod N , lims→1+ L(s, χ) is finite, and

lim
s→1+

L(s, χ) 6= 0

Thus, for non-trivial character, the logarithmic derivative is finite and non-zero at s = 1. Putting this all
together, we will have

lim
s→1+

∑
χ mod N

χ(a)
d

d
logL(s, χ) = +∞

Then necessarily

lim
s→1+

∑
p=a mod N

log p

ps
= +∞
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and there must be infinitely many primes p = a mod N . ///

[1.1] What remains to be done? The non-vanishing of the non-trivial L-functions at 1, which we prove
a bit further below, is the crucial technical point. We prove Dirichlet’s dual cancellation trick in the next
section: this is an immediate consequence of Fourier analysis on finite abelian groups. We will also check
that the L-functions L(s, χ) have analytic continuations to regions including s = 1.

2. Dual groups of abelian groups

Dirichlet’s use of group characters to isolate primes in a specified congruence class modulo N was a big
innovation in 1837. These ideas were predecessors of the group theory work of Frobenious and Schur 50
years later, and one of the ancestors of representation theory of groups.

The dual group or group of characters Ĝ of a finite abelian group G is by definition

Ĝ = {group homomorphisms χ : G→ C×}

This Ĝ is itself an abelian group under the operation on characters defined for g ∈ G by

(χ1 · χ2)(g) = χ1(g) · χ2(g)

Recall the basic result on Fourier expansions on finite abelian groups:

[2.0.1] Theorem: For a finite abelian group G with dual group Ĝ, any complex-valued function f on G
has a Fourier expansion

f(g) =
1

|G|
∑
χ∈Ĝ

f̂(χ)χ(g) (for all g ∈ G)

where the Fourier coefficients f̂(χ) are

f̂(χ) =
∑
g∈G

f(g)χ(g)

The characters are an orthogonal basis for L2(G). In particular, Fourier coefficients are unique. (This is
really about commuting unitary operators on finite-dimensional complex vector spaces, and the main point
is the spectral theorem for unitary operators.) ///

[2.0.2] Corollary: Let G be a finite abelian group. For g 6= e in G, there is a character χ ∈ Ĝ such that

χ(g) 6= 1. [2]

Proof: Suppose that χ(g) = 1 for all χ ∈ Ĝ. That is, χ(g) = χ(e) for all χ. Then, for any coefficients cχ,∑
χ

cχ χ(e) =
∑
χ

cχ χ(g)

Since every function on the group has such a Fourier expansion, this says that every function on G has the
same value at g as at e. Thus, g = e. ///

[2.0.3] Corollary: For a finite abelian group G,

|G| = |Ĝ|

[2] This idea that characters can distinguish group elements from each other is just the tip of an iceberg.
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Proof: The characters form an orthogonal basis for L2(G), so the number of characters is the dimension of
L2(G), which is |G|. ///

[2.0.4] Remark: In fact, using the structure theorem for finite abelian groups, one can show that G and
its dual are isomorphic, but this isomorphism is not canonical.

[2.0.5] Corollary: (Dual version of cancellation trick) For g in a finite abelian group,

∑
χ∈Ĝ

χ(g) =

{
|Ĝ| (for g = e)
0 (otherwise)

Proof: If g = e, then the sum counts the characters in Ĝ. On the other hand, given g 6= e in G, let χ1 be

in Ĝ such that χ1(g) 6= 1, from a previous corollary. The map on Ĝ

χ→ χ1 · χ

is a bijection of Ĝ to itself, so ∑
χ∈Ĝ

χ(g) =
∑
χ∈Ĝ

(χ · χ1)(g) = χ1(g) ·
∑
χ∈Ĝ

χ(g)

which gives

(1− χ1(g)) ·
∑
χ∈Ĝ

χ(g) = 0

Since 1− χ1(g) 6= 0, it must be that the sum is 0. ///

3. Ugly proof of non-vanishing on Re(s) = 1

Dirichlet’s argument for the infinitude of primes p = a mod N (for gcd(a,N) = 1) requires that L(1, χ) 6= 0
for all χ mod N . We prove this now, granting that these functions have meromorphic extensions to some
neighborhood of s = 1. We also need to know that for the trivial character χo mod N the L-function L(s, χo)
has a simple pole at s = 1. These analytical facts are proven in the next section.

The argument here is unilluminating, but has low prerequisites.

[3.0.1] Theorem: For a Dirichlet character χ mod N other than the trivial character χo mod N ,

L(1, χ) 6 = 0

Proof: To prove that the L-functions L(s, χ) do not vanish at s = 1, and in fact do not vanish on the whole

line [3] Re(s) = 1, direct arguments involve tricks similar to what we do here.

[3] Non-vanishing of ζ(s) on the whole line Re(s) = 1 yields the Prime Number Theorem: let π(x) be the number

of primes less than x. Then π(x) ∼ x/ lnx, meaning that the limit of the ratio of the two sides as x → ∞ is 1.

This was first proven in 1896, separately, by Hadamard and de la Vallée Poussin. The same sort of argument

also gives an analogous asymptotic statement about primes in each congruence class modulo N , namely that

πa,N (x) ∼ x/[ϕ(N) · lnx], where gcd(a,N) = 1 and ϕ is Euler’s totient function.
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First, for χ whose square is not the trivial character χo modulo N , the standard trick is to consider

λ(s) = L(s, χo)
3 · L(s, χ)4 · L(s, χ2)

Then, letting σ = Re(s), from the Euler product expressions for the L-functions noted earlier, in the region
of convergence,

|λ(s)| = | exp

(∑
m,p

3 + 4χ(pm) + χ2(pm)

mpms

)
| = exp

∣∣∣∣∣∑
m,p

3 + 4 cos θm,p + cos 2θm,p
mpmσ

∣∣∣∣∣
where for each m and p we let

θm,p = (the argument of χ(pm)) ∈ R

The trick [4] is that for any real θ

3 + 4 cos θ + cos 2θ = 3 + 4 cos θ + 2 cos2 θ − 1 = 2 + 4 cos θ + 2 cos2 θ = 2(1 + cos θ)2 ≥ 0

Therefore, all the terms inside the large sum being exponentiated are non-negative, and, [5]

|λ(s)| ≥ e0 = 1

In particular, if L(1, χ) = 0 were to be 0, then, since L(s, χo) has a simple pole at s = 1 and since L(s, χ2)
does not have a pole (since χ2 6= χo), the multiplicity ≥ 4 of the 0 in the product of L-functions would
overwhelm the three-fold pole, and λ(1) = 0. This would contradict the inequality just obtained.

For χ2 = χo, instead consider

λ(s) = L(s, χ) · L(s, χo) = exp

(∑
p,m

1 + χ(pm)

mpms

)

If L(1, χ) = 0, then this would cancel the simple pole of L(s, χo) at 1, giving a non-zero finite value at s = 1.
The series inside the exponentiation is a Dirichlet series with non-negative coefficients, and for real s∑

p,m

1 + χ(pm)

mpms
≥

∑
p,m even

1 + 1

mpms
=
∑
p,m

1 + 1

2mp2ms
=
∑
p,m

1

mp2ms
= log ζ(2s)

Since ζ(2s) has a simple pole at s = 1
2 the series

log (L(s, χ) · L(s, χo)) =
∑
p,m

1 + χ(pm)

mpms
≥ log ζ(2s)

necessarily blows up as s → 1
2

+
. But by Landau’s Lemma below, a Dirichlet series with non-negative

coefficients cannot blow up as s→ so along the real line unless the function represented by the series fails to
be holomorphic at so. Since the function given by λ(s) is holomorphic at s = 1/2, this gives a contradiction
to the supposition that λ(s) is holomorphic at s = 1 (which had allowed this discussion at s = 1/2). That
is, L(1, χ) 6= 0. ///

[3.0.2] Remark: Again, the above argument is quick, but unilluminating. We will give better proofs later.

[4] Presumably found after considerable fooling around.

[5] Miraculously...
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4. Analytic continuations

Dirichlet’s original argument did not emphasize holomorphic functions, but by now we know that discussion
of vanishing and blowing-up of functions is most clearly and simply accomplished if the functions are
meromorphic when viewed as functions of a complex variable.

For the purposes of Dirichlet’s theorem, it suffices to meromorphically continue [6] the L-functions to
Re(s) > 0. [7] Since we need only this slight analytic continuation, we can give a simpler argument
than would be needed to analytically continue these L-functions to the entire plane.

[4.0.1] Theorem: The Dirichlet L-functions

L(s, χ) =
∑
n

χ(n)

ns
=
∏
p

1

1− χ(p) p−s

have meromorphic continuations to Re(s) > 0. For χ non-trivial, L(s, χ) is holomorphic on that half-plane.
For χ trivial, L(s, χo) has a simple pole at s = 1 and is holomorphic otherwise.

Proof: First, to treat the trivial character χo mod N , recall, as already observed, that the corresponding
L-function differs in an elementary way from ζ(s), namely

L(s, χo) = ζ(s) ·
∏
p|N

(
1− 1

ps

)

Thus, we analytically continue ζ(s) instead of L(s, χo). To analytically continue ζ(s) to Re(s) > 0 observe
that the sum for ζ(s) is fairly well approximated by a more elementary function

ζ(s)− 1

s− 1
=

∞∑
n=1

1

ns
−
∫ ∞
1

dx

xs
=

∞∑
n=1

 1

ns
−

(
1

ns−1
− 1

(n+ 1)s−1

)
1− s


Since (

1

ns−1
− 1

(n+ 1)s−1

)
1− s

=
1

ns
+O(

1

ns+1
)

with a uniform O-term, we obtain

ζ(s)− 1

s− 1
=
∑
n

O(
1

ns+1
) = holomorphic for Re(s) > 0

[6] An extension of a holomorphic function to a larger region, on which it may have some poles, is called a

meromorphic continuation. There is no general methodology for proving that functions have meromorphic

continuations, due in part to the fact that, generically, functions do not have continuations beyond some natural region

where they’re defined by a convergent series or integral. Indeed, to be able to prove a meromorphic continuation

result for a given function is tantamount to proving that it has some deeper significance.

[7] Already prior to Riemann’s 1859 paper, it was known that the Euler-Riemann zeta function and all the L-

functions we need here did indeed have meromorphic continuations to the whole complex plane, have no poles unless

the character χ is trivial, and have functional equations similar to that of zeta, namely that π−s/2Γ(s/2)ζ(s) is

invariant under s→ 1− s.
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The obvious analytic continuation of 1/(s− 1) allows analytic continuation of ζ(s).

A relatively elementary analytic continuation argument for non-trivial characters uses partial summation.
That is, let {an} and {bn} be sequences of complex numbers such that the partial sums An =

∑n
i=1 ai are

bounded, and bn → 0. Then it is useful to rearrange (taking A0 = 0 for notational convenience)

∞∑
n=1

anbn =

∞∑
n=1

(An −An−1)bn =

∞∑
n=0

Anbn −
∞∑
n=0

Anbn+1 =

∞∑
n=0

An(bn − bn+1)

Taking an = χ(n) and bn = 1/ns gives

L(s, χ) =

∞∑
n=0

(
n∑
`=1

χ(`)

)
(

1

ns
− 1

(n+ 1)s
)

The difference 1/ns − 1/(n+ 1)s is s/ns+1 up to higher-order terms, so this expression gives a holomorphic
function for Re(s) > 0. ///

5. Dirichlet series with positive coefficients

Now we prove Landau’s result on Dirichlet series with positive coefficients. (More precisely, the coefficients
are non-negative.)

[5.0.1] Theorem: (Landau) Let

f(s) =

∞∑
n=1

an
ns

be a Dirichlet series with real coefficients an ≥ 0. Suppose that the series defining f(s) converges for
Re(s) > σo. Suppose further that the function f extends to a function holomorphic in a neighborhood of
s = σo. Then, in fact, the series defining f(s) converges for Re(s) > σo − ε for some ε > 0.

Proof: First, by replacing s by s − σo we lighten the notation by reducing to the case that σo = 0. Since
the function f(s) given by the series is holomorphic on Re(s) > 0 and on a neighborhood of 0, there is ε > 0
such that f(s) is holomorphic on |s− 1| < 1 + 2ε, and the power series for the function converges nicely on
this open disk. Differentiating the original series termwise (Abel’s theorem), we evaluate the derivatives of
f(s) at s = 1 as

f (i)(1) =
∑
n

(− log n)i an
n

= (−1)i
∑
n

(log n)i an
n

and Cauchy’s formulas yield, for |s− 1| < 1 + 2ε,

f(s) =
∑
i≥0

f (i)(1)

i!
(s− 1)i

In particular, for s = −ε, we are assured of the convergence to f(−ε) of

f(−ε) =
∑
i≥0

f (i)(1)

i!
(−ε− 1)i

Note that (−1)if (i)(1) is a positive Dirichlet series, so we move the powers of −1 a little to obtain

f(−ε) =
∑
i≥0

(−1)if (i)(1)

i!
(ε+ 1)i
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The series
(−1)if (i)(1) =

∑
n

(log n)i
an
n

has positive terms, so the double series (convergent, with positive terms)

f(−ε) =
∑
n,i

an (log n)i

i!
(1 + ε)i

1

n

can be rearranged to

f(−ε) =
∑
n

an
n

(∑
i

(log n)i(1 + ε)i

i!

)
=
∑
n

an
n
n(1+ε) =

∑
n

an
n−ε

That is, the latter series converges (absolutely). ///
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