Belyi’s proof of a conjecture of Grothendieck
Paul Garrett, garrett@math.umn.edu, ©2001

(This proof is due to Gennady Belyi, mid-to-late 1980’s.)

Theorem: Let X be a complete connected curve defined over a number field. Then there is a morphism $\pi : X \to \mathbb{P}^1$ from X to the projective line \mathbb{P}^1 which is defined over \mathbb{Q} and ramified at most at $0, 1,$ and ∞.

Proof: For a non-constant meromorphic function f in $\overline{\mathbb{Q}}(X)$, view f as giving a \mathbb{Q}-morphism to \mathbb{P}^1. Let $S \subset \mathbb{P}^1$ be the points ramified for f. By composing with a linear fractional transformation with coefficients in $\overline{\mathbb{Q}}$, we may suppose without loss of generality that such a set S contains $0, 1, \infty$ whenever the cardinality of S is at least 3.

First we reduce to the case that the ramified points are rational, rather than merely algebraic. Let $\alpha \in S \cap \overline{\mathbb{Q}}$ be an algebraic number of maximal degree over \mathbb{Q} among all such. Suppose that the degree $[\mathbb{Q}(\alpha) : \mathbb{Q}]$ is greater than 1, and let P be the minimal polynomial of α over \mathbb{Q}. Then $P \circ f : X \to \mathbb{P}^1$ is ramified at

$P(S) \cup \{ \text{zeros of the derivative } P' \}$

Thus, $P \circ f$ has fewer ramified points of degree $[\mathbb{Q}(\alpha) : \mathbb{Q}]$ than did f, since $(P \circ f)(\alpha) = 0$ and since the degree of P' is less than that of P. Therefore, by induction, we may suppose that we are given $f : X \to \mathbb{P}^1$ ramified only at rational points and possibly ∞.

By composing with a linear fractional transformation, we may suppose without loss of generality that all the ramified points are rational or \mathbb{Q}-rational points in the interval $[0, 1]$. If the cardinality of S is strictly greater than 3, then there is an element of S of the form $m/(m+n)$ with $m \geq 1, n \geq 1$, both integers. Consider the map

$g(z) = z^m (1 - z)^n$

The derivative g' has zeros at most at $0, 1, m/(m+n)$. Thus, the composite map $g \circ f$ is ramified over

$g(S - \{0, m/(m+n), 1\}) \cup g(0), g(m/(m+n)) = g(S - \{0, m/(m+n), 1\}) \cup \{g(0), g(m/(m+n))\}$

since $g(0) = g(1)$. In particular, $g \circ f$ has strictly fewer ramified points than does f.

Continuing the latter process, adjusting by linear fractional transformations over \mathbb{Q} as necessary, by induction the desired result is achieved.

\blacksquare