Harmonic analysis, on \mathbb{R}, \mathbb{R}/\mathbb{Z}, \mathbb{Q}_p, \mathbb{A}, and \mathbb{A}_k/k, key ingredients in Iwasawa-Tate.

Need the abelian topological group analogue of characters $x \to e^{2\pi i x \xi}$ for $\xi \in \mathbb{R}$, $x \in \mathbb{R}$, and Fourier transforms

$$\hat{f}(\xi) = \mathcal{F} f(\xi) = \int_{\mathbb{R}} e^{-2\pi i x \xi} f(x) \, dx$$

and Fourier inversion

$$f(x) = \mathcal{F}^{-1} \hat{f}(x) = \int_{\mathbb{R}} e^{2\pi i \xi x} \hat{f}(\xi) \, d\xi$$

for nice functions f on \mathbb{Q}_p and \mathbb{A}. Similarly for all completions k_v and adeles \mathbb{A}_k of number fields. And *adelic Poisson summation*

$$\sum_{x \in k} f(x) = \sum_{x \in k} \hat{f}(x)$$ \hspace{1cm} (for suitable f on \mathbb{A}_k)
Recap:

No small subgroups: The circle S^1 has no small subgroups: there is a neighborhood U of the identity $1 \in S^1$ such that the only subgroup inside U is $\{1\}$.

Unitary duals of abelian topological groups: The unitary dual G^\vee of an abelian topological group G is all continuous group homs $G \to S^1$. For example, $\mathbb{R}^\vee \approx \mathbb{R}$, by $\xi \to (x \to e^{i\xi x})$.

Theorem: $\mathbb{Q}_p^\vee \approx \mathbb{Q}_p$ and $\mathbb{A}_p^\vee \approx \mathbb{A}$.

Remark: \mathbb{Z}_p as limit and \mathbb{Q}_p as colimit, and \mathfrak{o}_v and k_v similarly in general, are admirably adapted to determine these duals.

Remark: Since our model of the topological group \mathbb{Q}_p implicitly specifies more information, namely, the subgroup \mathbb{Z}_p, the isomorphisms are canonical. If we only gave the isomorphism class without specifying a compact-open subgroup, the isomorphism would not be canonical, just as the dual vector space to a finite-dimensional vector space V has the same dimension as V, but is not canonically isomorphic to V.
Corollary: Given non-trivial $\psi \in \mathbb{Q}_p^\vee$, every other element of \mathbb{Q}_p^\vee is of the form $x \to \psi(\xi \cdot x)$ for some $\xi \in \mathbb{Q}_p$. Similarly, given non-trivial $\psi \in \mathbb{A}^\vee$, every other element of \mathbb{A}^\vee is of the form $x \to \psi(\xi \cdot x)$ for some $\xi \in \mathbb{A}$.

Remark: This sort of result is already familiar from the analogue for \mathbb{R}, that $x \to e^{i\xi x}$ for $\xi \in \mathbb{R}$ are all the unitary characters of \mathbb{R}.

Proof: On one hand, it is clear that, for given continuous group hom $\psi : \mathbb{Q}_p \to S^1$ and $\xi \in \mathbb{Q}_p$, the character $x \to \psi(\xi \cdot x)$ is another. Thus, the dual is a \mathbb{Q}_p-vectorspace.

On the other hand, in the proof that $\mathbb{Q}_p^\vee \approx \mathbb{Q}_p$, we chose the pairing $\mathbb{Q}_p \times \mathbb{Q}_p^\vee \to \mathbb{C}^\times$, which would determine the isomorphism. Indeed, given $x \in \mathbb{Q}_p$, there is $x' \in p^{-k}\mathbb{Z}$ for some $k \in \mathbb{Z}$, such that $x - x' \in \mathbb{Z}_p$, the standard character is

$$\psi_1(x) = e^{-2\pi ix'}$$

(sign choice for later purposes)
The character ψ_1 is trivial on \mathbb{Z}_p. For $\xi \in \mathbb{Q}_p$, let

$$\psi_\xi(x) = \psi_1(\xi \cdot x) \quad \text{(for } x, \xi \in \mathbb{Q}_p)$$

For a finite extension k_v of \mathbb{Q}_p (whether or not we know how k_v arises as a completion of a number field), the standard character is described as

$$\psi_\xi(x) = \psi_1(\text{tr}_{k_v/\mathbb{Q}_p}(\xi \cdot x)) \quad \text{(for } x, \xi \in k_v)$$

Since $\text{tr}(\mathcal{O}_v) \subset \mathbb{Z}_p$, certainly $\ker \psi_\xi \supset \xi^{-1}\mathcal{O}_v$.

Occasionally, the kernel of ψ_ξ can be slightly larger than $\xi^{-1}\mathcal{O}_v$.
Compact-discrete duality

For abelian topological groups G, pointwise multiplication makes \hat{G} an abelian group. A reasonable topology on \hat{G} is the compact-open topology, with a sub-basis

$$U = U_{C,E} = \{ f \in \hat{G} : f(C) \subset E \}$$

for compact $C \subset G$, open $E \subset S^1$.

Remark: The reasonable-ness of this topology is utilitarian. For a compact topological space X, $C^o(X)$ with the sup-norm is a Banach space. The compact-open topology is the analogue for $C^o(X,Y)$ when X,Y are topological groups. More aspects of this will become clear later.
Granting for now that the compact-open topology makes \hat{G} an abelian (locally-compact, Hausdorff) topological group,

Theorem: The unitary dual of a *compact* abelian group is *discrete*. The unitary dual of a *discrete* abelian group is *compact*.

Proof: Let G be compact. Let E be a small-enough open in S^1 so that E contains no non-trivial subgroups of G. Using the compactness of G itself, let $U \subset \hat{G}$ be the open

$$U = \{f \in \hat{G} : f(G) \subset E\}$$

Since E is small, $f(G) = \{1\}$. That is, f is the trivial homomorphism. This proves discreteness of \hat{G} for compact G.
For G discrete, every group homomorphism to S^1 is continuous. The space of all functions $G \to S^1$ is the cartesian product of copies of S^1 indexed by G. By Tychonoff’s theorem, this product is compact. For discrete X, the compact-open topology on the space $C^o(X,Y)$ of continuous functions from $X \to Y$ is the product topology on copies of Y indexed by X.

The set of functions f satisfying the group homomorphism condition

$$f(gh) = f(g) \cdot f(h) \quad \text{ (for } g, h \in G)$$

is closed, since the group multiplication $f(g) \times f(h) \to f(g) \cdot f(h)$ in S^1 is continuous. Since the product is also Hausdorff, \hat{G} is also compact.

///
Theorem: \((\mathbb{A}/k)^\sim \approx k\). In particular, given any non-trivial character \(\psi\) on \(\mathbb{A}/k\), all characters on \(\mathbb{A}/k\) are of the form \(x \to \psi(\alpha \cdot x)\) for some \(\alpha \in k\).

Proof: For a (discretely topologized) number field \(k\) with adeles \(\mathbb{A}\), \(\mathbb{A}/k\) is compact, and \(\mathbb{A}\) is self-dual.

Because \(\mathbb{A}/k\) is compact, \((\mathbb{A}/k)^\sim\) is discrete. Since multiplication by elements of \(k\) respects cosets \(x + k\) in \(\mathbb{A}/k\), the unitary dual has a \(k\)-vectorspace structure given by

\[
(\alpha \cdot \psi)(x) = \psi(\alpha \cdot x) \quad (\text{for } \alpha \in k, \ x \in \mathbb{A}/k)
\]

There is no topological issue in this \(k\)-vectorspace structure, because \((\mathbb{A}/k)^\sim\) is discrete. The quotient map \(\mathbb{A} \to \mathbb{A}/k\) gives a natural injection \((\mathbb{A}/k)^\sim \to \hat{\mathbb{A}}\).
Given non-trivial \(\psi \in (\mathbb{A}/k)^\wedge \), the \(k \)-vectorspace \(k \cdot \psi \) inside \((\mathbb{A}/k)^\wedge \) injects to a copy of \(k \cdot \psi \) inside \(\hat{\mathbb{A}} \approx \mathbb{A} \). Assuming for a moment that the image in \(\mathbb{A} \) is essentially the same as the diagonal copy of \(k \), \((\mathbb{A}/k)^\wedge/k \) injects to \(\mathbb{A}/k \). The topology of \((\mathbb{A}/k)^\wedge \) is discrete, and the quotient \((\mathbb{A}/k)^\wedge/k \) is still discrete. These maps are continuous group homs, so the image of \((\mathbb{A}/k)^\wedge/k \) in \(\mathbb{A}/k \) is a discrete subgroup of a compact group, so is finite. Since \((\mathbb{A}/k)^\wedge \) is a \(k \)-vectorspace, \((\mathbb{A}/k)^\wedge/k \) is a singleton. Thus, \((\mathbb{A}/k)^\wedge \approx k \), if the image of \(k \cdot \psi \) in \(\mathbb{A} \approx \hat{\mathbb{A}} \) is the usual diagonal copy.

To see how \(k \cdot \psi \) is imbedded in \(\mathbb{A} \approx \hat{\mathbb{A}} \), fix non-trivial \(\psi \) on \(\mathbb{A}/k \), and let \(\psi \) be the corresponding character on \(\mathbb{A} \). The self-duality of \(\mathbb{A} \) is that the action of \(\mathbb{A} \) on \(\hat{\mathbb{A}} \) by \((x \cdot \psi)(y) = \psi(xy) \) gives an isomorphism. The subgroup \(x \cdot \psi \) with \(x \in k \) is certainly the usual diagonal copy.