Continuing the pre/review of the simple (!?) case...

Continuing: factorization of Dedekind zeta-functions into Dirichlet L-functions, equivalently, behavior of primes in extensions. So far,

$$\zeta_{\mathbb{Z}[i]}(s) = \zeta(s) \cdot L(s, \chi) \quad \chi(p) = \left(\frac{-1}{p}\right)_2$$

$$\zeta_{\mathbb{Z}[\sqrt{2}]}(s) = \zeta(s) \cdot L(s, \chi) \quad \chi(p) = \left(\frac{2}{p}\right)_2$$

$$\zeta_{\mathbb{Z}[\sqrt{-2}]}(s) = \zeta(s) \cdot L(s, \chi) \quad \chi(p) = \left(\frac{-2}{p}\right)_2$$

Next, $\mathbb{Z}[\omega]$ with ω an eighth root of unity. First, look at the eighth cyclotomic polynomial $x^4 + 1$.

Comment: The change of variables $x \to x + 1$ gives $x^4 + 4x^3 + 6x^2 + 4x + 2$, so Eisenstein’s criterion and Gauss’ Lemma prove irreducibility of $x^4 + 1$ in $\mathbb{Q}[x]$.
A peculiar feature of the polynomial $x^4 + 1$:

Claim: $x^4 + 1$ is reducible modulo every prime p.

$p = 2$ is easy. For $p > 2$, for $x^4 + 1 = 0$ to have a root in \mathbb{F}_p requires existence of an element of order 8 in \mathbb{F}_p^\times, so $8|p - 1$, and $p = 1 \mod 8$. For $x^4 + 1 = 0$ to have a root in \mathbb{F}_{p^2} requires existence of an element of order 8 in $\mathbb{F}_{p^2}^\times$, so $8|p^2 - 1$.

Interestingly-enough, $\mathbb{Z}/8^\times$ is not cyclic, but is isomorphic to $\mathbb{Z}/2 \oplus \mathbb{Z}/2$. Thus, $p^2 = 1 \mod 8$ for all odd p. That is, at worst, $x^4 + 1 = 0$ has a root in \mathbb{F}_{p^2} for all odd p.

Comment For f a monic polynomial in $\mathbb{Z}[x]$ irreducibility of its image in $\mathbb{F}_p[x]$ certainly implies its irreducibility in $\mathbb{Z}[x]$. We might hope that there’d be a sort of converse, namely, that irreducible monics in $\mathbb{Z}[x]$ would be irreducible mod some prime p... but $x^4 + 1$ is a counter-example.
Example: eighth roots of unity

Let $\omega = \frac{1+i}{\sqrt{2}}$ be a primitive eighth root of unity, and $\mathfrak{o} = \mathbb{Z}[\omega]$.

The non-trivial characters mod 8 are $\left(\frac{-1}{p}\right)_2$, $\left(\frac{2}{p}\right)_2$, and $\left(\frac{-2}{p}\right)_2$.

Claim:

$$\zeta_\mathfrak{o}(s) = \zeta(s) \cdot L(s, \left(\frac{-1}{p}\right)) \cdot L(s, \left(\frac{2}{p}\right)) \cdot L(s, \left(\frac{-2}{p}\right))$$

Without determining whether \mathfrak{o} is a PID, or what its units are, if/when it becomes necessary, let’s be willing to grant that it is a Dedekind domain, in that every non-zero ideal factors uniquely into prime ideals.
By Euler’s criterion, computing mod p,

$$\left(\frac{-2}{p}\right)_2 = (-2)^{\frac{p-1}{2}} = (-1)^{\frac{p-1}{2}} \cdot 2^{\frac{p-1}{2}} = \left(\frac{-1}{p}\right)_2 \cdot \left(\frac{2}{p}\right)_2$$

The characters of $\mathbb{Z}/8^\times$

<table>
<thead>
<tr>
<th>p mod 8</th>
<th>triv</th>
<th>$(-1)^*$</th>
<th>$(2)^*$</th>
<th>$(-2)^*$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mod 8</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3 mod 8</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>5 mod 8</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>7 mod 8</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>

For 3, 5, 7 there are exactly two -1’s in each row.
As earlier, for rational prime $p > 2$,

$$\mathfrak{o}/p \approx \mathbb{Z}[x]/\langle x^4 + 1, p \rangle \approx \mathbb{F}_p[x]/\langle x^4 + 1 \rangle$$

$$\approx \begin{cases}
\mathbb{F}_p \oplus \mathbb{F}_p \oplus \mathbb{F}_p \oplus \mathbb{F}_p & \text{(for } p = 1 \text{ mod } 8) \\
\mathbb{F}_p^2 \oplus \mathbb{F}_p^2 & \text{(for } p = 3, 5, 7 \text{ mod } 8)
\end{cases}$$

Observe: Prime splitting determined by congruence conditions!!!

Since $x^4 + 1 = (x + 1)^4 \text{ mod } 2$, for $p = 2$ something more complicated happens:

$$\mathbb{F}_2[x]/(x + 1)^4 \neq \text{ product of fields}$$

Indeed, we already saw that, in the PIDs $\mathbb{Z}[i]$ and $\mathbb{Z}[\sqrt{2}]$, inside the intermediate fields, 2 is *ramified*. A little later we’ll have means to see that the above computation implies 2 is *totally ramified* in the extension $\mathfrak{o} = \mathbb{Z}[\omega]$ of \mathbb{Z}, namely, $2\mathfrak{o} = \mathfrak{p}^4$.
Write $\chi_D(p) = \left(\frac{D}{p}\right)_2$ for $D = -1, 2, -2$.

For $p = 1 \mod 8$, applying the ideal norm to $p\mathfrak{o} = p_1 p_2 p_3 p_4$ gives $Np_i = p$, so

$$\prod_{p|p} \frac{1}{1 - Np^{-s}} = \left(\frac{1}{1 - p^{-s}}\right)^4$$

$$= \frac{1}{1 - \frac{1}{p^s}} \cdot \frac{1}{1 - \frac{\chi_1(p)}{p^s}} \cdot \frac{1}{1 - \frac{\chi_2(p)}{p^s}} \cdot \frac{1}{1 - \frac{\chi_3(p)}{p^s}}$$

$$= \text{Euler } p\text{-factors from } \zeta(s), L(s, \chi_1), L(s, \chi_2), L(s, \chi_3)$$
For \(p = 3, 5, 7 \mod 8 \), \(p\sigma = p_1p_2 \) gives \(Np_i = p^2 \), so

\[
\prod_{\substack{p|p \\\text{or} \\\text{p} \mod 8}} \frac{1}{1 - Np^{-s}} = \left(\frac{1}{1 - p^{-2s}} \right)^2
\]

\[
= \frac{1}{1 - \frac{1}{p^s}} \cdot \frac{1}{1 + \frac{1}{p^s}} \cdot \frac{1}{1 - \frac{1}{p^s}} \cdot \frac{1}{1 + \frac{1}{p^s}} \quad \text{(in some order!?!)}
\]

\[
= \frac{1}{1 - \frac{1}{p^s}} \cdot \frac{1}{1 - \frac{\chi-1(p)}{p^s}} \cdot \frac{1}{1 - \frac{\chi_2(p)}{p^s}} \cdot \frac{1}{1 - \frac{\chi-2(p)}{p^s}} \quad \text{(order?)}
\]

\[
= \text{Euler } p\text{-factors from } \zeta(s), \ L(s, \chi_{-1}), \ L(s, \chi_2), \ L(s, \chi_{-2})
\]

We could have treated \(p = 3, 5, 7 \) separately, tracking which two-out-of-three characters took values \(-1\), but this would not have accomplished much. Except for the Euler 2-factors, we’ve proven

\[
\zeta_\sigma(s) = \zeta(s) \cdot L(s, (\frac{-1}{p})) \cdot L(s, (\frac{2}{p})) \cdot L(s, (\frac{-2}{p}))
\]
Example: fifth roots of unity

Let \(\omega \) be a primitive fifth root of unity, and \(\mathfrak{o} = \mathbb{Z}[\omega] \).

The group \(\mathbb{Z}/5^\times \) has four characters: the trivial one, an order-two character \(\chi_2 \), and two order-four characters \(\chi_1, \chi_3 \).

(Note: This indexing is incompatible with earlier...)

Claim:
\[
\zeta_\mathfrak{o}(s) = \zeta(s) \cdot L(s, \chi_1) \cdot L(s, \chi_2) \cdot L(s, \chi_3)
\]

Without determining whether \(\mathfrak{o} \) is a PID, or what its units are, if necessary, grant that it is a Dedekind domain, ...
As earlier, for rational prime \(p \), with \(\Phi_5(x) = x^4 + x^3 + x^2 + x + 1 \) the fifth cyclotomic polynomial,

\[
\mathfrak{o}/p \approx \mathbb{Z}[x]/\langle \Phi_5, p \rangle \approx \mathbb{F}_p[x]/\langle \Phi_5 \rangle
\]

\[
\approx \begin{cases}
\mathbb{F}_p \oplus \mathbb{F}_p \oplus \mathbb{F}_p \oplus \mathbb{F}_p \oplus \mathbb{F}_p & \text{(for } 5|p - 1) \\
\mathbb{F}_{p^2} \oplus \mathbb{F}_{p^2} & \text{(for } 5|p^2 - 1 \text{ but } 5 \nmid p - 1) \\
\mathbb{F}_{p^4} & \text{(for } 5|p^4 - 1 \text{ but } 5 \nmid p^2 - 1)
\end{cases}
\]

\[
\approx \begin{cases}
\mathbb{F}_p \oplus \mathbb{F}_p \oplus \mathbb{F}_p \oplus \mathbb{F}_p \oplus \mathbb{F}_p & \text{(for } p = 1 \text{ mod } 5) \\
\mathbb{F}_{p^2} \oplus \mathbb{F}_{p^2} & \text{(for } p = -1 \text{ mod } 5) \\
\mathbb{F}_{p^4} & \text{(for } p = 2, 3 \text{ mod } 5)
\end{cases}
\]

Observe: Prime splitting determined by congruence conditions!!!
For p splitting completely $p\mathcal{O} = \mathcal{O}_1\mathcal{O}_2\mathcal{O}_3\mathcal{O}_4$, norms are $N\mathcal{O}_i = p$, and

$$\prod_{p|\mathcal{O}} \frac{1}{1 - Np^{-s}} = \left(\frac{1}{1 - p^{-s}}\right)^4$$

$$= \frac{1}{1 - \frac{1}{p^s}} \cdot \frac{1}{1 - \frac{\chi_1(p)}{p^s}} \cdot \frac{1}{1 - \frac{\chi_2(p)}{p^s}} \cdot \frac{1}{1 - \frac{\chi_3(p)}{p^s}}$$

= Euler p-factors from $\zeta(s)$, $L(s, \chi_1)$, $L(s, \chi_2)$, $L(s, \chi_3)$
For p splitting half-way $p\mathfrak{o} = p_1p_2$, norms are $Np_i = p^2$, and

$$\prod_{p|p} \frac{1}{1 - Np^{-s}} = \left(\frac{1}{1 - p^{-2s}} \right)^2$$

$$= \frac{1}{1 - \frac{1}{p^s}} \cdot \frac{1}{1 - \frac{1}{p^s}} \cdot \frac{1}{1 + \frac{1}{p^s}} \cdot \frac{1}{1 + \frac{1}{p^s}}$$

$$= \frac{1}{1 - \frac{1}{p^s}} \cdot \frac{1}{1 - \frac{\chi_2(p)}{p^s}} \cdot \frac{1}{1 - \frac{\chi_1(p)}{p^s}} \cdot \frac{1}{1 - \frac{\chi_3(p)}{p^s}}$$

= Euler p-factors from $\zeta(s)$, $L(s, \chi_2)$, $L(s, \chi_1)$, $L(s, \chi_3)$

... in that order, except that we can’t distinguish the order-four characters χ_1, χ_3.
For \(p \) inert \(p\mathfrak{o} = p \), the norm is \(Np = p^4 \), and

\[
\prod_{p\mid p} \frac{1}{1 - Np^{-s}} = \frac{1}{1 - p^{-4s}}
\]

\[
= \frac{1}{1 - \frac{1}{p^s}} \cdot \frac{1}{1 + \frac{1}{p^s}} \cdot \frac{1}{1 - \frac{i}{p^s}} \cdot \frac{1}{1 + \frac{i}{p^s}}
\]

\[
= \frac{1}{1 - \frac{1}{p^s}} \cdot \frac{1}{1 - \frac{\chi_2(p)}{p^s}} \cdot \frac{1}{1 - \frac{\chi_1(p)}{p^s}} \cdot \frac{1}{1 - \frac{\chi_3(p)}{p^s}}
\]

= Euler \(p \)-factors from \(\zeta(s) \), \(L(s, \chi_2) \), \(L(s, \chi_1) \), \(L(s, \chi_3) \)

... not distinguishing the order-four characters \(\chi_1, \chi_3 \).

This proves the claimed factorization, except for \(p = 5 \). The interested reader might show that \(5\mathfrak{o} = (\omega - 1)^4 \), and then it’s easy to see the complete factorization of the Dedekind zeta.