... Commutative Algebra...

integral extension of commutative rings \mathcal{O}/\mathfrak{o}: every $r \in \mathcal{O}$ satisfies $f(r) = 0$ for monic $f \in \mathfrak{o}[x]$

Recharacterization of integrality: α in a field extension K of field of fractions k of \mathfrak{o} is integral when there is a non-zero, finitely-generated \mathfrak{o}-module M inside K such that $\alpha M \subset M$. [Proven]

- For \mathcal{O} integral over \mathfrak{o}, if \mathcal{O} is finitely-generated as an \mathfrak{o}-algebra, then it is finitely-generated as an \mathfrak{o}-module.

- Transitivity: For rings $A \subset B \subset C$, if B is integral over A and C is integral over B, then C is integral over A.

Example: Function fields in one variable
Claim: For a PID \(\mathfrak{o} \) with fraction field \(k \), for a finite separable field extension \(K/k \), the integral closure \(\mathfrak{O} \) of \(\mathfrak{o} \) in \(K \) is a free \(\mathfrak{o} \)-module of rank \([K : k] \).

Comment on proof: \(\mathfrak{O} \) is torsion-free as \(\mathfrak{o} \)-module, but finite-generation, to invoke the structure theorem, seems to need the separability:

Claim: For an integrally closed (in its fraction field \(k \)), Noetherian ring \(\mathfrak{o} \), the integral closure \(\mathfrak{O} \) of \(\mathfrak{o} \) in a finite separable field extension \(K/k \) is a finitely-generated \(\mathfrak{o} \)-module.

Comment: For such reasons, Dedekind domains (below) need Noetherian-ness, as a partial substitute for PID-ness. Separability of field extensions seems important, too!
Claim: For a finite separable field extension K/k, the trace pairing $\langle \alpha, \beta \rangle = \text{tr}_{K/k}(\alpha \beta)$ is non-degenerate, in the sense that, given $0 \neq \alpha \in K$, there is $\beta \in K$ such that $\text{tr}_{K/k}(\alpha \beta) \neq 0$.

Equivalently, $\text{tr}_{K/k} : K \to k$ is not the 0-map.

This follows from linear independence of characters: given χ_1, \ldots, χ_n distinct group homomorphisms $K^\times \to \Omega^\times$ for fields K, Ω, for any coefficients α_j's in Ω,

$$\alpha_1 \chi_1 + \ldots + \alpha_n \chi_n = 0 \implies \text{all } \alpha_j = 0$$

Corollary: For \mathfrak{O} the integral closure of Noetherian, integrally closed \mathfrak{o} (in its fraction field k) in a finite separable field extension K/k,

$$\text{tr}_{K/k} \mathfrak{O} \subset \mathfrak{o}$$
Critical point in proofs of the above: Finitely-generated modules over Noetherian rings are Noetherian modules, and submodules \(O \) of Noetherian modules are Noetherian, so \(O \) is a finitely-generated \(o \)-module.

A module \(M \) over a commutative ring \(R \) (itself not necessarily Noetherian) is Noetherian when it satisfies any of the following (provably, below) equivalent conditions:

- Every submodule of \(M \) is finitely-generated.
- Every ascending chain of submodules \(M_1 \subset M_2 \subset \ldots \) eventually stabilizes, that is, \(M_i = M_{i+1} \) beyond some point.
- Any non-empty set \(S \) of submodules has a maximal element, that is, an element \(M_o \in S \) such that \(N \supset M_o \) and \(N \in S \) implies \(N = M_o \).
Claim: Submodules and quotient modules of Noetherian modules are Noetherian. Conversely, for $M \subset N$, if M and N/M are Noetherian, then N is. That is, in a short exact sequence

$$0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$$

(meaning that $A \rightarrow B$ is injective, that the image of $A \rightarrow B$ is the kernel of $B \rightarrow C$, and that $B \rightarrow C$ is surjective), Noetherian-ness of B is equivalent to Noetherian-ness of A and C.

Corollary: For M, N Noetherian, $M \oplus N$ is Noetherian. Arbitrary finite sums of Noetherian modules are Noetherian.
Again, a commutative ring R is Noetherian if it is Noetherian as a module over itself. This is equivalent to the property that every submodule (=ideal) is finitely-generated.

Claim: A finitely-generated module M over a Noetherian ring R is a Noetherian module.

Proof: Let m_1, \ldots, m_n generate M, so there is a surjection

$$R \oplus \ldots \oplus R \longrightarrow M$$

by

$$r_1 \oplus \ldots \oplus r_n \longrightarrow \sum_i r_i \cdot m_i$$

The sum $R \oplus \ldots \oplus R$ is Noetherian, and the image/quotient is Noetherian. ///
This completes the discussion of the proof that the *integral closure* \(\mathfrak{D} \) of *Noetherian, integrally closed* \(\mathfrak{o} \) in a finite, separable field extension \(K/k \) is a *finitely-generated* \(\mathfrak{o} \)-module.

The end of the proof had \(\mathfrak{D} \) inside a finitely-generated module:

\[
\mathfrak{D} \subset c^{-1} \cdot \left(\mathfrak{o} \cdot \alpha_1 + \ldots + \mathfrak{o} \cdot \alpha_n \right)
\]

Finitely-generated modules over Noetherian rings \(\mathfrak{o} \) are Noetherian, and submodules \(\mathfrak{D} \) of Noetherian modules are Noetherian, so \(\mathfrak{D} \) is Noetherian, so finitely-generated.

Then, for \(\mathfrak{o} \) a PID, since \(\mathfrak{D} \) is *finitely-generated* over \(\mathfrak{o} \), structure theory of finitely-generated modules over PIDs says \(\mathfrak{D} \) is *free*... it’s not hard to show that an \(\mathfrak{o} \)-basis for \(\mathfrak{D} \) is also a \(k \)-basis for \(K \)....
Example: Function fields in one variable (over finite fields):

The polynomial rings $\mathbb{F}_q[X]$ are as well-behaved as \mathbb{Z}. Their fields of fractions $\mathbb{F}_q(X)$, rational functions in X with coefficients in \mathbb{F}_q, are as well-behaved as \mathbb{Q}.

For that matter, for *any* field E, $E[X]$ is Euclidean, so is a PID and a UFD. E_{finite} is most similar to \mathbb{Z}, especially that the *residue fields are finite*: quotient $\mathbb{F}_q[X]/\langle f \rangle$ with f a *prime* (=positive-degree monic polynomial) are finite fields.

The algebra of integral closures of $\mathfrak{o} = \mathbb{F}_q[X]$ in finite separable fields extensions of $k = \mathbb{F}_q(X)$ is identical to that with \mathbb{Z} and \mathbb{Q} at the bottom.

But to talk about the *geometry*, it is useful to think about $\mathbb{C}[X]$...
Since \(\mathbb{C} \) is algebraically closed, the non-zero prime ideals in \(\mathbb{C}[X] \) are \(\langle X - z \rangle \), for \(z \in \mathbb{C} \).

That is, the point \(z \in \mathbb{C} \) is the simultaneous vanishing set of the ideal \(\langle X - z \rangle \).

The \textit{point at infinity} \(\infty \) is the vanishing set of \(1/X \), but \(1/X \) is not in \(\mathbb{C}[X] \), so we can’t talk about the ideal generated by it...

Revise: points \(z \in \mathbb{C} \) are in bijection with \textit{local rings} \(\mathfrak{o} \subset \mathbb{C}(X) \), meaning \(\mathfrak{o} \) has a \textit{unique maximal (proper) ideal} \(\mathfrak{m} \), by

\[
\begin{align*}
 z & \longleftrightarrow \mathfrak{o}_z = \left\{ \frac{P}{Q} : P, Q \in \mathbb{C}[X], \, Q(z) \neq 0 \right\} \\
 \mathfrak{m}_z & = \left\{ \frac{P}{Q} : P, Q \in \mathbb{C}[X], \, Q(z) \neq 0, \, P(z) = 0 \right\}
\end{align*}
\]
That is, \mathfrak{o}_z is the ring of rational functions defined at z, and its unique maximal ideal \mathfrak{m}_z is the functions (defined and) vanishing at z. These are also referred to as

$$\mathfrak{o}_z = \text{localization at } \langle X - z \rangle \text{ of } \mathbb{C}[X]$$

$$= S^{-1} \cdot \mathbb{C}[X] \quad \text{(where } S = \mathbb{C}[X] - (X - z)\mathbb{C}[X])$$

These localizations of the PID $\mathbb{C}[X]$ are still PIDs.

In fact, again, each such has a single non-zero prime ideal $\langle X - z \rangle$.

In \mathfrak{o}_z every proper ideal is of the form $(X - z)^n \cdot \mathfrak{o}_z$ for some $0 < n \in \mathbb{Z}$.

Again, the unique maximal ideal is $\mathfrak{m}_z = (X - z) \cdot \mathfrak{o}_z$.
As usual, instead of trying to evaluate something at $X = \infty$, evaluate $1/X$ at 0:

$$\mathfrak{o}_\infty = \{ f(X) = g(1/X) : g \text{ is defined at 0} \}$$

$$= \left\{ \frac{P(1/X)}{Q(1/X)} : P, Q \in \mathbb{C}[X], Q(0) \neq 0 \right\}$$

$$\mathfrak{m}_\infty = \{ f(X) = g(1/X) \in \mathfrak{o}_\infty : g(0) = 0 \}$$

$$= \left\{ \frac{P(1/X)}{Q(1/X)} : P, Q \in \mathbb{C}[X], Q(0) \neq 0, P(0) = 0 \right\}$$
From one viewpoint, a (compact, connected) Riemann surface M is/corresponds (!?) to a finite field extension K of $k = \mathbb{C}(X)$.

The finite points of the Riemann surface M are the zero-sets of non-zero prime ideals of the integral closure \mathcal{O} of $\mathfrak{o} = \mathbb{C}[X]$ in K. (In fact, the ring \mathcal{O} is Dedekind.)

Claim: For typical $z \in \mathbb{C}$, the prime ideal $\langle X - z \rangle = (X - z)\mathbb{C}[X]$ gives rise to $(X - z)\mathcal{O} = \mathfrak{P}_1 \ldots \mathfrak{P}_n$, where $n = [K : k]$. That is, n points on M lie over $z \in \mathbb{C}$:

Proof: We can reduce to the case that $K = \mathbb{C}(X, Y)$ with Y satisfying a monic polynomial equation $f(X, Y) = 0$ with coefficients in $\mathbb{C}[X]$, and f of degree $[K : k]$.
Then do the usual computation

$$\mathcal{O}/(X - z)\mathcal{O} = \mathbb{C}[X, T]/\langle X - z, f(X, T) \rangle$$

$$\approx \mathbb{C}[T]/\langle f(z, T) \rangle$$

$$\approx \mathbb{C}[T]/\langle (T - w_1)(T - w_2) \ldots (T - w_n) \rangle$$

$$\approx \frac{\mathbb{C}[T]}{\langle T - w_1 \rangle} \oplus \frac{\mathbb{C}[T]}{\langle T - w_2 \rangle} \oplus \ldots \oplus \frac{\mathbb{C}[T]}{\langle T - w_n \rangle}$$

$$\approx \mathbb{C} \oplus \mathbb{C} \oplus \ldots \oplus \mathbb{C}$$

for distinct w_j. By the Lemma proven earlier, $\mathcal{O}/(X - z)\mathcal{O}$ is a product of n prime ideals.
For example, for the elliptic curve

\[Y^2 = X^3 + aX + b \quad \text{(with } a, b \in \mathbb{C}) \]

where \(X^3 + aX + b = 0 \) has distinct roots, we have (!?) \(\mathcal{O} = \mathbb{C}[X, Y] \approx \mathbb{C}[X, T]/\langle T^2 - X^3 - aX - b \rangle \) with a second indeterminate \(T \), and the usual trick gives

\[
\mathcal{O}/(X - z)\mathcal{O} = \mathbb{C}[X, T]/\langle X - z, T^2 - X^3 - aX - b \rangle
\]

\[
\approx \mathbb{C}[T]/\langle T^2 - z^3 - az - b \rangle
\]

\[
\approx \mathbb{C}[T]/\langle (T - w_1)(T - w_2) \rangle
\]

\[
\approx \frac{\mathbb{C}[T]}{\langle T - w_1 \rangle} \oplus \frac{\mathbb{C}[T]}{\langle T - w_2 \rangle}
\]

\[
\approx \mathbb{C} \oplus \mathbb{C}
\]

for distinct \(w_j \): \(\mathcal{O}/(X - z)\mathcal{O} \) is a product of 2 prime ideals.
To talk about *points at infinity*, either replace \(\mathfrak{o} = \mathbb{C}[X] \) by \(\mathfrak{o} = \mathbb{C}[1/X] \), or use the *local ring* description:

Given a *local* ring \(\mathfrak{o}_z \subset k = \mathbb{C}(X) \) corresponding to either \(z \in \mathbb{C} \) or \(z = \infty \), let \(\mathfrak{O} \) be the integral closure of \(\mathfrak{o}_z \) in \(K = \mathbb{C}(X, Y) \).

The maximal ideal \(\mathfrak{m}_z \) of \(\mathfrak{o}_z \) generates a product of prime (maximal) ideals in \(\mathfrak{O} \):

\[
\mathfrak{m}_z \cdot \mathfrak{O} = \mathfrak{P}_1 \ldots \mathfrak{P}_n \quad \text{(with } n = [K : k]\text{)}
\]
Pick a constant $C > 1$. Doesn’t matter much...

For each $z \in \mathbb{C} \cup \{\infty\}$, there is the $(X - z)$-adic, or just z-adic, norm

$$\left| (X - z)^n \cdot \frac{P(X)}{Q(X)} \right| = C^{-n}$$

The z-adic completions of $\mathbb{C}[X]$ and $\mathbb{C}(X)$ are defined as usual.

Hensel’s lemma applies.
For \(\mathbb{F}_q[X] \), the zeta function is

\[
Z(s) = \sum_{\text{monic } f} \frac{1}{(\# \mathbb{F}_p[X]/\langle f \rangle)^s} = \sum_{\text{monic } f} \frac{1}{q^{s \deg f}}
\]

\[
\# \text{irred monics deg } d = \frac{\# \text{ elements degree } d \text{ over } \mathbb{F}_q}{\# \text{ in each Galois conjugacy class}}
\]

\[
= \frac{1}{d} \left(q^d - \sum_{\text{prime } p|d} q^{d/p} + \sum_{\text{distinct } p_1,p_2|d} q^{d/p_1p_2} - \sum_{\text{distinct } p_1,p_2,p_3|d} q^{d/p_1p_2p_3} + \ldots \right)
\]

[continued...]