(memorable, if obscure) big global Theorem: The global norm residue symbol, the product of all local ones, ν, is a k^\times-invariant function on J: it factors through J/k^\times.

\[\downarrow \]

Memorable theorem: For $a, b \in k^\times$, Hilbert reciprocity is

\[\Pi_v (a, b)_v = 1 \]

\[\downarrow \]

Quadratic Reciprocity (‘main part’): For π and ϖ two elements of \mathfrak{o} generating distinct odd prime ideals,

\[\left(\frac{\varpi}{\pi} \right)_2 \left(\frac{\pi}{\varpi} \right)_2 = \Pi_v (\pi, \varpi)_v \]

where v runs over all even or infinite primes, and $(,)_v$ is the (quadratic) Hilbert symbol.
Next!!!

Primes lying over/under

Theorem: For \mathcal{O} integral over \mathfrak{o} and prime ideal \mathfrak{p} of \mathfrak{o}, there is at least one prime ideal \mathfrak{P} of \mathcal{O} such that $\mathfrak{P} \cap \mathfrak{o} = \mathfrak{p}$.

That is, \mathfrak{P} lies over \mathfrak{p}. \mathfrak{P} is maximal if and only if \mathfrak{p} is maximal.

Further, $\mathfrak{p} \cdot \mathcal{O} \neq \mathcal{O}$, keeping in mind that

$$p \cdot \mathcal{O} = \left\{ \sum_j p_j \cdot y_j : p_j \in \mathfrak{p}, y_j \in \mathcal{O} \right\}$$

There a natural commutative diagram

$$
\begin{array}{ccc}
\mathcal{O} & \longrightarrow & \mathcal{O}/\mathfrak{P} \\
\text{inj} \uparrow & & \uparrow \text{inj} \\
\mathfrak{o} & \longrightarrow & \mathfrak{o}/\mathfrak{p}
\end{array}
$$

We do not necessarily assume \mathfrak{o} or \mathcal{O} is a domain.
Proof: This is easiest reduced to \textit{local} questions.

The set $S = \mathfrak{o} - \mathfrak{p}$ is \textit{multiplicative} because \mathfrak{p} is prime. It is easy that $S^{-1}\mathfrak{O}$ is integral over $S^{-1}\mathfrak{o}$, and that $S^{-1}\mathfrak{o}$ has the unique maximal ideal $\mathfrak{m} = \mathfrak{p} \cdot S^{-1}\mathfrak{o}$.

To show $\mathfrak{p}\mathfrak{O} \neq \mathfrak{O}$, it suffices to consider the local version, and show $\mathfrak{m} \cdot S^{-1}\mathfrak{O} \neq S^{-1}\mathfrak{O}$, because

$$\mathfrak{p} \cdot S^{-1}\mathfrak{O} = \mathfrak{p} \cdot S^{-1}\mathfrak{o} \cdot S^{-1}\mathfrak{O} = \mathfrak{m} \cdot S^{-1}\mathfrak{O}$$

That is, it suffices to prove $\mathfrak{m} \cdot \mathfrak{O} \neq \mathfrak{O}$, with \mathfrak{o} \textit{local}.

For local \mathfrak{o}, if $\mathfrak{m} \cdot \mathfrak{O} = \mathfrak{O}$, then $1 \in \mathfrak{O}$ has an expression

$$1 = m_1y_1 + \ldots + m_ny_n,$$

with $m_j \in \mathfrak{m}$ and $y_j \in \mathfrak{O}$. Let \mathfrak{O}_1 be the ring $\mathfrak{O}_1 = \mathfrak{o}[y_1, \ldots, y_n]$. It is a finitely-generated \mathfrak{o}-\textit{algebra}, so by integrality is a finitely-generated \mathfrak{o}-\textit{module}.
Nakayama’s Lemma says that if $aM = M$ for an ideal contained in all maximal ideals of \mathfrak{o}, and M a finitely-generated \mathfrak{o}-module, then $M = \{0\}$.

Proof: (of Lemma) For M generated by m_1, \ldots, m_n, the hypothesis gives

$$m_1 = a_1 m_1 + \ldots + a_n m_n$$

(for some $a_j \in \mathfrak{a}$)

$$(1 - a_1)m_1 = a_2 m_2 + \ldots + a_n m_n$$

Either $1 - a_1$ is a unit, or it is contained in some maximal ideal. But \mathfrak{a} is contained in all maximal ideals, so $1 - a_1$ is a unit. Thus, m_1 is expressible in terms of the other generators. Induction proves the lemma.

///

Applying this to \mathfrak{O}_1 gives $\mathfrak{O}_1 = \{0\}$, contradiction. Thus, $\mathfrak{m} \cdot \mathfrak{O} \neq \mathfrak{O}$.
Reverting to not-necessarily-local \mathfrak{o}, in
\[
\mathfrak{O} \longrightarrow S^{-1}\mathfrak{O} \\
\uparrow \quad \uparrow \\
\mathfrak{o} \longrightarrow S^{-1}\mathfrak{o}
\]

$m \cdot S^{-1}\mathfrak{O} \neq S^{-1}\mathfrak{O}$, so is in some maximal ideal \mathfrak{M} of $S^{-1}\mathfrak{O}$, and $\mathfrak{M} \cap S^{-1}\mathfrak{o} \supset m$. By maximality of m, $\mathfrak{M} \cap S^{-1}\mathfrak{o} = m$.

\mathfrak{M} is non-zero prime, so $\mathfrak{P} = \mathfrak{M} \cap \mathfrak{O}$ is prime, because intersecting a prime ideal with a subring gives a prime ideal. \mathfrak{P} is not $\{0\}$, because of integrality: $0 \neq m \in \mathfrak{M}$ satisfies $m^n + a_{n-1}m^{n-1} + \ldots + a_o = 0$ with $a_i \in \mathfrak{o}$ and $0 \neq a_o \in \mathfrak{o} \cap \mathfrak{M}$.

Then
\[
o \cap \mathfrak{P} = o \cap (\mathfrak{O} \cap \mathfrak{M}) = o \cap \mathfrak{M} = o \cap (S^{-1}\mathfrak{o} \cap \mathfrak{M}) = o \cap m = \mathfrak{p}
\]
Finally, prove \(\mathfrak{P} \) maximal if and only if \(\mathfrak{p} \) is.

For \(\mathfrak{p} \) maximal, \(\mathfrak{o}/\mathfrak{p} \) is a field, and \(\mathfrak{O}/\mathfrak{P} \) is an integral domain, in any case. Show that an integral domain \(R \) integral over a field \(k \) is a field. Indeed, for \(f(y) = 0 \) minimal, with \(a_i \in k \) and \(0 \neq y \in R \), \(k[y] \) is the field \(k[Y]/\langle f(Y) \rangle \). In particular, \(y \) is invertible.

On the other hand, for \(\mathfrak{P} \) maximal, the field \(\mathfrak{O}/\mathfrak{P} \) is integral over \(\mathfrak{o}/\mathfrak{p} \). If \(\mathfrak{o}/\mathfrak{p} \) were not a field, it would have a maximal ideal \(\mathfrak{m} \), which would be prime. By lying-over, there would be a prime of \(\mathfrak{O}/\mathfrak{P} \) lying over \(\mathfrak{m} \), impossible. Thus, \(\mathfrak{p} \) is maximal.

///
Opportunistic calculation device: If $\mathcal{O} = \mathfrak{o}[y]$, with y satisfying minimal (monic) $f(y) = 0$, have a bijection

\[
\{\text{irreducible factors of } f \bmod \mathfrak{p}\} \leftrightarrow \{\text{primes over } \mathfrak{p}\}
\]

by

\[
\text{factor } \overline{f_j} \text{ of } f(Y) \bmod \mathfrak{p} \quad \longrightarrow \quad \ker \left(\mathcal{O} \rightarrow \mathfrak{o}/\mathfrak{p}[Y]/\langle \overline{f_j}(Y) \rangle \right)
\]

Remark: For \mathfrak{o} the ring of algebraic integers in a number field k (=integral closure of \mathbb{Z} in k), it is not generally true that the integral closure \mathcal{O} of \mathfrak{o} in a further finite extension K is of the form $\mathfrak{o}[y]$, although this is true for cyclotomic fields and some other examples.

Nevertheless, the local rings $S^{-1}\mathfrak{o}$ for $S = \mathfrak{o} - \mathfrak{p}$ do have the form $S^{-1}\mathcal{O} = S^{-1}\mathfrak{o}[y]$ for almost all \mathfrak{o}, so the calculational device applies almost everywhere locally.
Proof: Localizing, reduce to \(p \) maximal. As earlier,

\[
\mathcal{O} \rightarrow \mathcal{O}/p \approx \mathfrak{o}[y]/p \approx \mathfrak{o}[Y]/\langle f(Y), p \rangle
\]

\[
\approx \mathfrak{o}/p[Y]/\langle f(Y) \mod p \rangle \approx \bigoplus_j \mathfrak{o}/p[Y]/\overline{f}_j(Y)^{e_j}
\]

where \(\overline{f}_j \) are the distinct irreducible factors. Typically, the exponents \(e_j \) will be 1. In any case, this maps to \(\mathfrak{o}/p[Y]/\overline{f}_j(Y) \), which is a field. Thus, the kernel is a maximal, hence prime, ideal \(\mathfrak{P} \) containing \(p \).

On the other hand, \(\mathfrak{o}[y] = \mathcal{O} \rightarrow \mathcal{O}/\mathfrak{P} \) sends \(y \) to a root of some irreducible factor \(\overline{f}_j \) of \(f \mod p \). Two roots of \(\overline{f} \) are Galois-conjugate over \(\mathfrak{o}/p \) if and only if they are roots of the same irreducible mod \(p \).
Sun-Ze’s theorem: For ideals \(a_j \) in \(o \) such that \(a_i + a_j = o \) for \(i \neq j \), given \(x_j \), there is \(x \in o \) such that \(x = x_j \mod a_j \) for all \(j \).

Proof: The hypothesis gives \(a_1 \in a_1, a_2 \in a_2 \) such that \(a_1 + a_2 = 1 \). Then \(x = x_2 a_1 + x_1 a_2 \) solves the problem for two ideals.

Induction: for \(j > 1 \), let \(b_j \in a_1 \) and \(c_j \in a_j \) such that \(b_j + c_j = 1 \). Then
\[
1 = \prod_{j>1} (b_j + c_j) \in a_1 + \prod_{j>1} a_j
\]
That is, \(a_1 + \prod_{j>1} a_j = o \). Thus, there is \(y_1 \in o \) such that \(y_1 = 1 \mod a_1 \) and \(y_1 = 0 \mod \prod_{j>1} a_j \). Similarly, find \(y_i = 1 \mod a_i \) and \(y_i = 0 \mod \prod_{j \neq i} a_j \). Then \(x = \sum_j x_j y_j \) is \(x_i \mod a_i \). ///
next:

Transitivity of Galois groups on primes lying over \(\mathfrak{p} \)

Let \(K/k \) be finite Galois, \(\mathfrak{o} \) integrally closed in \(k \), \(\mathfrak{O} \) its integral closure in \(K \). Let \(\mathfrak{p} \) be prime in \(\mathfrak{o} \). The Galois group \(G = \text{Gal}(K/k) \) is transitive on primes lying over \(\mathfrak{p} \) in \(\mathfrak{O} \).

...