Primes lying over/under [recap/cont’d]

For \mathcal{O} integral over \mathfrak{o} and prime ideal \mathfrak{p} of \mathfrak{o}, there is at least one prime ideal \mathfrak{P} of \mathcal{O} such that $\mathfrak{P} \cap \mathfrak{o} = \mathfrak{p}$. \mathfrak{P} is maximal if and only if \mathfrak{p} is maximal. $\mathfrak{p} \cdot \mathcal{O} \neq \mathcal{O}$.

For K/k finite Galois, the Galois group $G = \text{Gal}(K/k)$ is transitive on primes lying over \mathfrak{p} in \mathcal{O}.

Generally, there are only finitely-many prime ideals lying over a given prime of \mathfrak{o}.

For maximal \mathfrak{P} lying over \mathfrak{p} in \mathfrak{o}, the decomposition group $G_{\mathfrak{P}}$ is the stabilizer of \mathfrak{P}. The decomposition field $K^\mathfrak{P}$ of \mathfrak{P} is the subfield of K fixed by $G_{\mathfrak{P}}$.

\mathfrak{P} is the only prime of \mathcal{O} lying above $\mathfrak{P} \cap K^\mathfrak{P}$.

Next: A less fussy/labor-intense version of localization...
Localization more generally: For non-integral-domains \(\mathfrak{o} \), collapsing can occur in localizations \(j : \mathfrak{o} \to \mathfrak{o}_p \).

Example: Localizing \(\mathfrak{o} = \mathbb{Z}/30 \) at the prime ideal \(\mathfrak{p} = 3 \cdot \mathbb{Z}/30 \) requires that \(10 \notin \mathfrak{p} \) become a unit in the image \(j : \mathfrak{o} \to \mathfrak{o}_p \). Thus,

\[
j(3) = j(3) \cdot j(10) \cdot j(10)^{-1} = j(30) \cdot j(10)^{-1} = 0 \cdot j(10)^{-1}
\]

Thus (!) \(\mathfrak{o}_p = \mathbb{Z}/3 \), and \(\mathbb{Z}/30 \to \mathbb{Z}/3 \) is the quotient map. Generally, \(j : \mathfrak{o} \to \mathfrak{o}_p \) sends zero-divisors \(x \in \mathfrak{p} \) with \(xy = 0 \) for \(y \notin \mathfrak{p} \) to 0:

\[
0 = j(0) \cdot j(y)^{-1} = j(xy)j(y)^{-1} = j(x)j(y)j(y)^{-1} = j(x)
\]

This explains the more complicated equivalence relation in the more general proof-of-existence-by-construction of localization, via some sort of generalized fractions:
Claim: The localization $j : \mathfrak{o} \to \mathfrak{o}_p$ exists: it can be constructed as pairs $\{(a, b) : x \in \mathfrak{o}, \ b \not\in p\}$, identifying $(a, b), (a', b')$ when $c \cdot (ab' - a'b) = 0$ for some $c \in \mathfrak{o} - p$, with addition and multiplication as usual. Given $\varphi : \mathfrak{o} \to R$, the corresponding $\Phi : \mathfrak{o}_p \to R$ is $\Phi(\frac{a}{b}) = \varphi(a)\varphi(b)^{-1}$.

Remark: Now it becomes interesting so check that \mathfrak{o}_p is not accidentally the degenerate ring $\{0\}$! This would use the hypothesis that no product of elements of $S = \mathfrak{o} - p$ is 0.

Remark: It would be reasonable to be impatient with, or even repelled by, the (tedious!) details involved in verification that things are well-defined, and that the construction really produces a ring, and that Φ is a ring homomorphism, etc.

What’s the alternative?
First, we may as well formulate the most general case:

For an arbitrary subset \(S \) (not just the complement of a prime ideal) of a commutative ring with identity \(\mathfrak{o} \), the localization \(j : \mathfrak{o} \to S^{-1}\mathfrak{o} \) can be characterized by a universal property: for any ring hom \(\varphi : \mathfrak{o} \to R \) with \(\varphi(S) \subset R^\times \), there is a unique \(\Phi \) giving a commutative diagram

\[
\begin{array}{ccc}
S^{-1}\mathfrak{o} & \xrightarrow{\exists \Phi} & R \\
\downarrow{i} & & \downarrow{} \\
\mathfrak{o} & \xrightarrow{\forall \varphi} & R
\end{array}
\]

Characterization by a universal property proves uniqueness..., when existence is proven, probably by a (hopefully graceful) construction.
Consider an expression as a quotient of a polynomial ring with indeterminates x_s for all $s \in S$:

\[S^{-1}\mathfrak{o} = \mathfrak{o}[\{x_s : s \in S\}] / \text{(ideal generated by } sx_s - 1, \forall s \in S) \]

with $j : \mathfrak{o} \rightarrow S^{-1}\mathfrak{o}$ induced by the inclusion $\mathfrak{o} \rightarrow \mathfrak{o}[\ldots, x_s, \ldots]$.

This produces a ring, for any $S \subset \mathfrak{o}$. Given $\varphi : \mathfrak{o} \rightarrow R$ with $\varphi(S) \subset R^\times$, the universal mapping properties of polynomial rings give a unique $\tilde{\varphi}$ extending φ to the polynomial ring by

\[\tilde{\varphi}(x_s) = \varphi(s)^{-1} \]

Then $\tilde{\varphi}$ factors uniquely through the quotient, since

\[\tilde{\varphi}(sx_s - 1) = \varphi(s)\tilde{\varphi}(x_s) - \varphi(1) = 1 - 1 = 0 \]
The diagram of well-defined, uniquely-determined ring homs:

\[
\begin{array}{c}
\exists ! \text{quot} \\
\mathfrak{O}[\ldots, x_s, \ldots] \\
\downarrow \exists ! \tilde{\varphi} \\
\langle \ldots, sx_s - 1, \ldots \rangle \\
\downarrow \exists ! \Phi \\
0 \quad \rightarrow \\
\forall \varphi \rightarrow R
\end{array}
\]

with \(\tilde{\varphi} \) uniquely induced by \(\tilde{\varphi}(x_s) = \varphi(s)^{-1} \), and \(\Phi \) uniquely induced by \(\tilde{\varphi} \).

What more is needed? When the ring \(\mathfrak{O} \) has 0-divisors, it is not clear that there are any such rings \(R \) (with \(0 \neq 1!!! \)) over which to quantify, and/or that \(S^{-1}\mathfrak{O} \) is not the trivial ring \{0\} with \(0 = 1 \).

Indeed, if any product of elements of \(S \) is 0, \(S^{-1}\mathfrak{O} = \{0\} \), but the above construction seems to succeed without this hypothesis.
Claim: In $S^{-1}\mathfrak{o}$, $0 \neq 1$ if and only if no product of elements of S is 0.

Proof: The degeneration $1 = 0$ in the quotient is equivalent to existence of an expression

$$\sum_{i=1}^{n} f_i(x_1, \ldots, x_n) \cdot (s_i x_i - 1) = 1 \in \mathfrak{o}[x_1, \ldots, x_n]$$

where $x_i = x_{s_i}$, for some finite subset $S_o = \{s_1, \ldots, s_n\}$ of S, where $f_i(x_1, \ldots, x_n)$ is a polynomial with coefficients in \mathfrak{o}.

One direction is easy: if $st = 0$ for $s, t \in S$, then in the quotient

$$S^{-1}\mathfrak{o} = \mathfrak{o}[x, y]/\langle sx - 1, ty - 1 \rangle$$

we compute

$$1 = 1 \cdot 1 = sx \cdot ty = st \cdot xy = 0 \cdot xy = 0 \quad (in \ S^{-1}\mathfrak{o})$$
That is, in \(o[x, y] \) itself,

\[
1 = (1 - sx + sx)(1 - ty + ty)
\]

\[
= (1 - sx)(1 - ty) + sx(1 - ty) + ty(1 - sx) + sxty
\]

\[
= (1 - sx)(1 - ty) + sx(1 - ty) + ty(1 - sx) + 0
\]

which is in the ideal generated by \(1 - sx \) and \(1 - ty \).

For the other direction, for \(S = \{s\} \) with a single element, a condition

\[
(c_\ell x^\ell + \ldots + c_1 x + c_o) \cdot (sx - 1) = 1
\]

gives \(c_o = -1 \) and \(c_k = -s^k \), and \(s^{\ell+1} = 0 \).
Inductively, suppose we have the claim for $|S| \leq n - 1$. Let $S = \{s_1, \ldots, s_n\}$, and suppose $S^{-1} \mathfrak{o} = \{0\}$.

From the mapping characterization, it is immediate that localization can be done stepwise: there is a natural isomorphism

$$(S_1 \cup S_2)^{-1} \mathfrak{o} \approx S_1^{-1} \left(S_2^{-1} \mathfrak{o} \right)$$

Let $\mathfrak{o}' = \{s_n\}^{-1} \mathfrak{o}$ and $S' = \{s_1, \ldots, s_{n-1}\}$. Then $0 = 1$ in $S'^{-1} \mathfrak{o}'$ implies that $s_1^{\ell_1} \ldots s_{n-1}^{\ell_{n-1}} = 0$ in \mathfrak{o}', for some non-negative integer exponents. Since $\mathfrak{o}' = \mathfrak{o}[x]/\langle s_n x - 1 \rangle$, for some coefficients c_i

$$s_1^{\ell_1} \ldots s_{n-1}^{\ell_{n-1}} = (c_\ell x^\ell + \ldots + c_o)(s_n x - 1)$$

Then $c_o = -s_1^{\ell_1} \ldots s_{n-1}^{\ell_{n-1}}$, and $s_1^{\ell_1} \ldots s_{n-1}^{\ell_{n-1}} \cdot s_n^{\ell+1} = 0$. ///
Corresponding localization of modules and algebras:

Let \(i : \mathfrak{o} \to \mathfrak{o}_p \) be the localization.

For an \(\mathfrak{o} \)-module \(M \), it should not be surprising that the useful notion of localization of \(M \) creates an \(\mathfrak{o}_p \)-module \(M_p \) by

\[
M_p = \mathfrak{o}_p \otimes_\mathfrak{o} M
\]

Similarly, for a (commutative) \(\mathfrak{o} \)-algebra \(A \),

\[
A_p = \mathfrak{o}_p \otimes_\mathfrak{o} A
\]

Or, why not the other extension of scalars, \(M_p = \text{Hom}_\mathfrak{o}(\mathfrak{o}_p, M) \)?