More about primes lying over...

\(\mathfrak{p} \) splits completely in \(K \) when there are \([K : k]\) distinct primes lying over \(\mathfrak{p} \) in \(\mathcal{O} \).

Corollary: For an abelian \(K/k \), the decomposition subfield \(K^\mathfrak{P} \) is the maximal subfield of \(K \) (containing \(k \)) in which \(\mathfrak{p} \) splits completely.

Frobenius map/automorphism

Artin map/automorphism

... and Dedekind rings.
The picture is

\[
\begin{array}{c}
\mathcal{K} \subset \mathcal{O} \subset \mathcal{P} \\
\mathcal{G}_\mathcal{P} \\
\mathcal{K}^{\mathcal{P}} \subset \mathcal{O}^{\mathcal{P}} \subset \mathcal{Q} = \mathcal{P} \cap \mathcal{K}^{\mathcal{P}} \\
k \subset \mathcal{O} \subset \mathcal{P} \\
\mathcal{O}^{\mathcal{P}} / \mathcal{Q} \\
\mathcal{O} / \mathcal{P} = \tilde{\kappa} \\
\mathcal{O} / \mathcal{P} = \kappa
\end{array}
\]
So far, we know that in the Galois case G is transitive on primes \mathfrak{P} lying over p.

And the decomposition subfield $K^\mathfrak{P}$ (=fixed field of decomposition group $G_\mathfrak{P}$) is the smallest subfield of K such that \mathfrak{P} is the only prime lying over $K^\mathfrak{P} \cap \mathfrak{P}$.

Claim: The inclusion $\sigma / p \rightarrow \mathcal{O}^\mathfrak{P} / q$ to the residue field attached to the decomposition field of \mathfrak{P} is an isomorphism.

Proof: The induced map is indeed an inclusion, because

$$ \mathfrak{p} = k \cap \mathfrak{P} = k \cap K^\mathfrak{P} \cap \mathfrak{P} $$

For surjectivity: for $\sigma \in G$ but not in $G_\mathfrak{P}$, $\sigma \mathfrak{P} \neq \mathfrak{P}$, and the prime ideal

$$ q_\mathfrak{P} = K^\mathfrak{P} \cap \sigma \mathfrak{P} $$

is not q, since \mathfrak{P} is the only prime lying over q.

Thus, given $x \in \mathfrak{O}_\mathfrak{p}$, Sun-Ze’s theorem gives $y \in \mathfrak{O}_\mathfrak{p}$ such that

$$\begin{cases}
y &= x \mod q \\
y &= 1 \mod q_\sigma \quad \text{(for all } \sigma \text{ not in } G_\mathfrak{p})
\end{cases}$$

Thus, certainly in the larger ring \mathfrak{O}

$$\begin{cases}
y &= x \mod \mathfrak{p} \\
y &= 1 \mod \sigma \mathfrak{p} \quad \text{(for all } \sigma \text{ not in } G_\mathfrak{p})
\end{cases}$$

That is, $\sigma y = 1 \mod \mathfrak{p}$ for $\sigma \not\in G_\mathfrak{p}$. The Galois norm of y from $K_\mathfrak{p}$ to k is a product of y with images σy with $\sigma \not\in G_\mathfrak{p}$. Therefore,

$$N_{k/K_\mathfrak{p}} y = x \mod \mathfrak{p}$$

The norm is in \mathfrak{o}, and the congruence holds mod q since $x \in \mathfrak{O}_\mathfrak{p}$. ///
Claim: \(\tilde{\kappa} = \mathcal{O}/\mathfrak{p} \) is normal over \(\kappa = \mathfrak{o}/\mathfrak{p} \), and \(G_{\mathfrak{p}} \) surjects to \(\text{Gal}(\tilde{\kappa}/\kappa) \).

Proof: Let \(\alpha \in \mathcal{O} \) generate a separable subextension \((\mod \mathfrak{p}) \) of \(\tilde{\kappa} \) over \(\kappa \). The minimal polynomial of \(\alpha \) over \(k \) has coefficients in \(\mathfrak{o} \) because \(\alpha \) is integral over \(\mathfrak{o} \). Since \(K/k \) is Galois, \(f \) splits into linear factors \(x - \alpha_i \) in \(K[x] \). Then \(f \mod \mathfrak{p} \) factors into linear factors \(x - \bar{\alpha}_i \) where \(\bar{\alpha}_i \) is \(\alpha_i \mod \mathfrak{p} \).

Thus, whatever the minimal polynomial of \(\bar{\alpha} \) over \(\kappa \), it factors into linear factors in \(\tilde{\kappa}[x] \). That is, \(\tilde{\kappa}/\kappa \) is normal, and

\[
[k(\bar{\alpha}) : \kappa] \leq [k(\alpha) : k] \leq [K : k]
\]

By the theorem of the primitive element, the maximal separable subextension is of finite degree, bounded by \([K : k] \).
To prove surjectivity of the Galois group map, it suffices to consider the situation that \mathfrak{p} is the only prime over \mathfrak{p}, from the discussion of the decomposition group and field above. Thus, $G = G_{\mathfrak{p}}$ and $K = K_{\mathfrak{p}}$.

By the theorem of the primitive element, there is α in \mathfrak{O} with image $\bar{\alpha}$ mod \mathfrak{p} generating the (maximal separable subextension of the) residue field extension $\tilde{\kappa}/\kappa$. Let f be the minimal polynomial of α over k, and \bar{f} the reduction of f mod \mathfrak{p}.

Normality of K/k gives the factorization of $f(x)$ into linear factors $x - \alpha_i$ in $\mathfrak{O}[x]$, and this factorization reduces mod \mathfrak{p} to a factorization into linear factors $x - \bar{\alpha}_i$ in $\tilde{\kappa}[x]$.

Automorphisms of $\tilde{\kappa}/\kappa$ are determined by their effect on $\bar{\alpha}$, and map $\bar{\alpha}$ to other zeros $\bar{\alpha}_i$ of \bar{f}. $\text{Gal}(K/k)$ is transitive on the α_i, so is transitive on the $\bar{\alpha}_i$. This proves surjectivity.
The **inertia subgroup** is the kernel $I_\mathfrak{P}$ of $G_\mathfrak{P} \to \text{Gal}(\tilde{\kappa}/\kappa)$, and the **inertia subfield** is the fixed field of $I_\mathfrak{P}$. (This is better called the 0^{th} **ramification** group...) For typical K/k, we’ll see later that $I_\mathfrak{P}$ is *trivial* for most \mathfrak{P}.

Remark: For us, $\tilde{\kappa}/\kappa$ will almost always be *separable*.

A prime p is **inert** in K/k (or in \mathcal{O}/\mathfrak{o}) the degree of the residue field extension (for any prime lying over p) is equal to the global field extension degree: $[\tilde{\kappa} : \kappa] = [K : k]$.

Corollary: For *finite* residue field κ, existence of inert primes in K/k implies $\text{Gal}(K/k)$ is *cyclic*.

Proof: Galois groups of finite extensions of finite fields are (separable and) cyclic. The degree equality requires that the map $G_\mathfrak{P} \to \text{Gal}(\tilde{\kappa}/\kappa)$ be an *isomorphism*, and that $G = G_\mathfrak{P}$.

///
Examples:

In quadratic Galois extensions K/k, there is no obvious obstacle to primes being inert, since a group with 2 elements could easily surject to a group with 2 elements.

Remark: Lack of an obstacle does not prove existence... Indeed, in extensions of $C(x)$ no prime stays prime, since the residue fields are all C, which is already algebraically closed.

In non-abelian Galois extensions such as $Q(\sqrt[3]{2},\omega)/Q$, with ω a cube root of unity, no prime $p \in o = Z$ can stay prime.

The Galois group of a cyclotomic extension $Q(\omega)/Q$ with ω an n^{th} root of unity is $(Z/n)^{\times}$, which is cyclic only for n of the form $n = p^{\ell}$, $n = 2p^{\ell}$, for p an odd prime, and for $n = 4$ (from elementary number theory).
[Examples, cont’d]

We had already seen that \(p \in \mathbb{Z} \) stays prime in \(\mathbb{Q}(\omega)/\mathbb{Q} \) if and only if the \(n^{th} \) cyclotomic polynomial \(\Phi_n \) is irreducible in \(\mathbb{F}_p[x] \). This irreducibility is equivalent to \(n \) not dividing \(p^d - 1 \) for any \(d < \deg \Phi_n \). This is equivalent to \(p \) being a \textit{primitive root} (=generator) for \((\mathbb{Z}/n)^\times\).

Again, a \textit{necessary} condition for cyclic-ness of \((\mathbb{Z}/n)^\times\) is that \(n \) be of the special forms \(p^\ell, 2p^\ell, 4 \).

But \textit{Dirichlet’s theorem} on primes in arithmetic progression is necessary to prove existence of \textit{primes} equal mod \(n \) to a primitive root.

\textit{Quadratic reciprocity} gives a congruence condition for quadratic extensions of \(\mathbb{Q} \), and Dirichlet’s theorem again gives \textit{existence}.
\(p \) splits completely in \(K \) when there are \([K : k]\) distinct primes lying over \(p \) in \(\mathcal{O} \).

Examples:

In \(\mathbb{Q}(\sqrt{D})/\mathbb{Q} \) with square-free \(D \in \mathbb{Z} \), odd \(p \) not dividing \(D \) with \(D \) a square mod \(p \) split completely: with \(D = 2, 3 \) mod 4, for simplicity, so that the ring of integers is really \(\mathbb{Z}[\sqrt{D}] \), as earlier,

\[
\mathcal{O}/p\mathcal{O} = \mathbb{Z}[x]/\langle p, x^2 - D \rangle = \mathbb{F}_p[x]/\langle x^2 - D \rangle
\]

In \(\mathbb{Q}(\omega)/\mathbb{Q} \) with \(\omega \) an \(n \)th root of unity, primes \(p = 1 \) mod \(n \) split completely. As we will see, the integral closure \(\mathcal{O} \) of \(\mathbb{Z} \) in \(\mathbb{Q}(\omega) \) really is \(\mathbb{Z}[\omega] \), and then, with \(\Phi_n \) the \(n \)th cyclotomic polynomial,

\[
\mathcal{O}/p\mathcal{O} = \mathbb{Z}[x]/\langle p, \Phi_n \rangle = \mathbb{F}_p[x]/\langle \Phi_n \rangle
\]
The n^{th} cyclotomic polynomial splits into linear factors over \mathbb{F}_p exactly when $p = 1 \mod n$, because \mathbb{F}_p^\times is cyclic.

Proof that there are infinitely-many primes $p = 1 \mod n$ is much easier than the general case of Dirichlet’s theorem:

Given a list p_1, \ldots, p_ℓ of primes, consider $N = \Phi_n(tp_1\ldots p_\ell)$ for integers t at our disposal. The cyclotomic Φ_n has integer coefficients and constant coefficient ± 1, so N is not divisible by any p_j. For sufficiently large t, N cannot be ± 1, either. Thus, N has prime factors p other than p_j.

At the same time, $p | \Phi_n(j)$ for an integer j says that j is a primitive n^{th} root of unity mod p, so $p = 1 \mod n$.

///
Corollary: For abelian K/k, the decomposition subfield $K^\mathfrak{P}$ is the maximal subfield of K (containing k) in which \mathfrak{p} splits completely.

Proof: With $\sigma_1, \ldots, \sigma_n$ representatives for $G/G_{\mathfrak{P}}$, by transitivity, $\sigma_j \mathfrak{P}$ are distinct, and are all the primes over \mathfrak{p}. The abelian-ness implies that the decomposition subfields $K^\mathfrak{P}$ for the $\sigma_j \mathfrak{P}$ are all the same.

Let $q = \mathfrak{p} \cap K^\mathfrak{P}$. From above, \mathfrak{P} is the only prime over q, and $\sigma_j \mathfrak{P}$ is the only prime over $\sigma_j q$, and the latter must be distinct. Since $[K : k] = |G| = |G_{\mathfrak{P}}| \cdot n$, necessarily \mathfrak{p} splits completely in $K^\mathfrak{P}$.

Conversely, with E an intermediate field in which \mathfrak{p} splits completely, $G_{\mathfrak{P}}$ fixes $\mathfrak{P} \cap E$. The hypothesis that \mathfrak{p} splits completely in E implies that the decomposition subgroup of $\mathfrak{P} \cap E$ in $\text{Gal}(E/k)$ is trivial. That is, the restriction of $G_{\mathfrak{P}}$ to E is trivial, so $G_{\mathfrak{P}} \subset \text{Gal}(K/E)$.

//

//