Frobenius map/automorphism

Artin map/automorphism

Dedekind rings.

The picture:
Corollary: For abelian K/k, the decomposition subfield $K^\mathfrak{P}$ is the maximal subfield of K (containing k) in which p splits completely.

Proof: With $\sigma_1, \ldots, \sigma_n$ representatives for $G/G_\mathfrak{P}$, by transitivity, $\sigma_j \mathfrak{P}$ are distinct, and are all the primes over p. The abelian-ness implies that the decomposition subfields $K^\mathfrak{P}$ for the $\sigma_j \mathfrak{P}$ are all the same.

Let $q = \mathfrak{P} \cap K^\mathfrak{P}$. From above, \mathfrak{P} is the only prime over q, and $\sigma_j \mathfrak{P}$ is the only prime over $\sigma_j q$, and the latter must be distinct. Since $[K : k] = |G| = |G_\mathfrak{P}| \cdot n$, necessarily p splits completely in $K^\mathfrak{P}$.

Conversely, with E an intermediate field in which p splits completely, $G_\mathfrak{P}$ fixes $\mathfrak{P} \cap E$. The hypothesis that p splits completely in E implies that the decomposition subgroup of $\mathfrak{P} \cap E$ in Gal(E/k) is *trivial*. That is, the restriction of $G_\mathfrak{P}$ to E is trivial, so $G_\mathfrak{P} \subset$ Gal(K/E). ///
The distinguishing feature of **number fields** (finite extensions of \(\mathbb{Q} \)) and **function fields** (finite extensions of \(\mathbb{F}_p(x) \)), and their completions, is that their **residue fields are finite**.

All finite extensions of finite fields are **cyclic** (Galois).

There is a canonical generator, the **Frobenius automorphism** \(x \rightarrow x^q \) of the Galois group of **any** extension of \(\mathbb{F}_q \).

Given a prime \(p \) and \(\mathfrak{p} \) lying over it in a Galois extension \(K/k \) of number fields or functions fields, with residue field extension \(\tilde{\kappa}/\kappa \), with \(\kappa \approx \mathbb{F}_q \), the **Frobenius map/automorphism** in \(G_{\mathfrak{p}} \) is anything that maps to \(x \rightarrow x^q \).

Artin map/automorphism is Frobenius for **abelian** extensions.

The point is that, by transitivity of Galois on primes \(\mathfrak{p} \) lying over \(p \), in an **abelian** extension all decomposition groups \(G_{\mathfrak{p}} \) are the same subgroup, so the Frobenius element of \(\text{Gal}(K/k) \) does not depend on the choice of \(\mathfrak{p} \) over \(p \).
A **fractional ideal** \(\mathfrak{a} \) of \(\mathfrak{o} \) in its fraction field \(k \) is an \(\mathfrak{o} \)-submodule of \(k \) such that there is \(0 \neq c \in \mathfrak{o} \) such that \(c\mathfrak{a} \subseteq \mathfrak{o} \).

Examples: Fractional ideals of \(\mathbb{Z} \) are \(\mathbb{Z} \cdot r \) for \(r \in \mathbb{Q} \).

\(\mathbb{Z} \)-submodules of \(\mathbb{Q} \) requiring infinitely-many generators are not fractional ideals. E.g., neither the localization \(\mathbb{Z}_{(p)} \), nor the localization

\[
\bigcup_{\ell \geq 1} \frac{1}{p^\ell} \cdot \mathbb{Z}
\]

(not a fractional ideal)

Theorem: In a Noetherian, integrally closed integral domain \(\mathfrak{o} \) in which every non-zero prime ideal is maximal, every non-zero ideal is **uniquely a product of prime ideals**, and the non-zero fractional ideals form a **group** under multiplication. [Below...]

Dedekind domains are Noetherian, integrally-closed integral domains in which every non-zero prime ideal is maximal. The **ideal class group** \(I_k = I_\mathfrak{o} \) is the group of non-zero fractional ideals modulo **principal** fractional ideals.
Also: Dedekind domains are characterized by the fact that their ideals are finitely-generated projective modules. [Proof later.]

An R-module P is projective when any diagram

\[
\begin{array}{ccc}
B & \longrightarrow & C \\
\uparrow & & \uparrow \\
P & & \\
\end{array}
\to 0
\]

(with $B \to C \to 0$ exact)

admits at least one extension to a commutative diagram

\[
\begin{array}{ccc}
B & \longrightarrow & C \\
\downarrow & & \downarrow \\
P & & \\
\end{array}
\to 0
\]

Free modules are projective, but over non-PIDs there are more.
While we’re here: an R-module I is *injective* when any diagram

\[
\begin{array}{ccc}
0 & \longrightarrow & A \\
\downarrow & & \downarrow \\
& I & \\
\end{array} \quad \longrightarrow \quad \begin{array}{ccc}
& & B \\
& \downarrow & \\
& & \downarrow \\
\end{array}
\]
(with $0 \to A \to B$ exact)

admits at least one extension to a commutative diagram

\[
\begin{array}{ccc}
0 & \longrightarrow & A \\
\downarrow & & \downarrow \\
I & \searrow & \\
\end{array} \quad \longrightarrow \quad \begin{array}{ccc}
& & B \\
& \downarrow & \\
& & \downarrow \\
\end{array}
\]
(with $0 \to A \to B$ exact)

Baer showed that, for example, *divisible* \mathbb{Z}-modules are injective.
The **structure theorem for finitely-generated modules** over PIDs, over Dedekind domains, is **Steinitz’ theorem**:

A finitely-generated module M over a Dedekind domain \mathfrak{o} is

$$M \cong \mathfrak{o}/a_1 \oplus \ldots \oplus \mathfrak{o}/a_n \oplus \mathfrak{o}^r \oplus \mathfrak{a}$$

where $a_1|\ldots|a_n$ are uniquely-determined non-zero ideals, the rank r of the free part \mathfrak{o}^r is uniquely determined, and the isomorphism class of the ideal \mathfrak{a} is uniquely determined.

[This is often omitted from algebraic number theory books. See Milnor’s *Algebraic K-theory*, or Cartan-Eilenberg.]

That is, the ideal class group is the torsion part of the K-group $K_0(\mathfrak{o}) = \text{projective finitely-generated } \mathfrak{o}\text{-modules, with tensor product, modulo free.}$
\textit{Proof:} [van der Waerden, Lang] Let \(\mathfrak{o} \) be a Noetherian integral domain, integrally closed in its field of fractions, and every non-zero prime ideal is maximal.

First: given non-zero ideal \(\mathfrak{a} \), there is a product of non-zero prime ideals \textit{contained in} \(\mathfrak{a} \). If not, by Noetherian-ness there is a \textit{maximal} ideal \(\mathfrak{a} \) failing to contain a product of primes, and \(\mathfrak{a} \) is not prime. Thus, there are \(b, c \in \mathfrak{o} \) neither in \(\mathfrak{a} \) such that \(bc \in \mathfrak{a} \). Thus, \(b = \mathfrak{a} + \mathfrak{o}b \) and \(c = \mathfrak{a} + \mathfrak{o}c \) are strictly larger than \(\mathfrak{a} \), and \(bc \subseteq \mathfrak{a} \).

Since \(\mathfrak{a} \) was maximal among ideals not containing a product of primes, both \(b, c \) contain such products. But then their product \(bc \subseteq \mathfrak{a} \) does, contradiction.
Second: for maximal m, the o-module $m^{-1} = \{x \in k : xm \subset o\}$ is strictly larger than o. Certainly $m^{-1} \supset o$, since m is an ideal. We claim that m^{-1} is strictly larger than o. Indeed, for $m \in m$ and a (smallest possible) product of primes p_j such that

$$p_1 \ldots p_n \subset m o$$

Since $mo \subset m$ and m is prime, $p_j \subset m$ for at least one p_j, say p_1. Since every (non-zero) prime is maximal, $p_1 = m$.

By minimality, $p_2 \ldots p_n \not\subset m o$. That is, there is $y \in p_2 \ldots p_n$ but $y \not\in mo$, or $m^{-1} y \not\in o$. But $ym = yp_1 \subset m o$, so $m^{-1} y m \subset o$, and $m^{-1} y \in m^{-1}$ but not in o.
Third: maximal m in \mathfrak{o} is invertible. By this point, $m \subset m^{-1}m \subset \mathfrak{o}$. By maximality of m, either $m^{-1}m = m$ or $m^{-1}m = \mathfrak{o}$.

The Noetherian-ness of \mathfrak{o} implies that m is finitely-generated. A relation $m^{-1}m = m$ would show that m^{-1} stabilizes a non-zero, finitely-generated \mathfrak{o}-module. Since \mathfrak{o} is integrally closed in k, this would give $m^{-1} \subset \mathfrak{o}$, but we have seen otherwise. Thus, we have the inversion relation $m^{-1}m = \mathfrak{o}$ for maximal m.

Fourth: every non-zero ideal a has inverse $a^{-1} = \{y \in k : ya \subset \mathfrak{o}\}$. If not, there is maximal a failing this, and a cannot be a maximal ideal, by the previous step. Thus, a is properly contained in some maximal ideal m. Certainly $a \subset m^{-1}a \subset a^{-1}a \subset \mathfrak{o}$. Integral-closedness of \mathfrak{o} and $m^{-1} \neq \mathfrak{o}$, $m \supset \mathfrak{o}$ show that $m^{-1}a \not\subset a$.

Thus, $m^{-1}a$ is strictly larger than a, so has an inverse f. Thus, $(fm^{-1}) \cdot a = f \cdot (m^{-1}a) = \mathfrak{o}$. That is, fm^{-1} is an inverse for a, contradiction.

[cont’d]