Examples discussion 02

[This document is http://www.math.umn.edu/~garrett/m/real/examples_2017-18/real-disc-02.pdf]

[02.1] Show that ℓ^2 is complete as a metric space.

Discussion: We can do this directly, although it is also a special case of the general fact that $L^2(X,\mu)$ is complete. Indeed, the argument will be a somewhat simpler version of the more general proof.

Let f_1, f_2, \ldots be a Cauchy sequence in ℓ^2. Let $f(n)$ be the n^{th} component of $f \in \ell^2$, for $n = 1, 2, \ldots$. For any $f \in \ell^2$, certainly $|f(n)| \leq |f|_{\ell^2}$, so for each n the scalar sequence $f_1(n), f_2(n), f_3(n), \ldots$ must be Cauchy, thus has a limit $f(n)$. We claim that $f = (f(1), f(2), f(3), \ldots)$ is in ℓ^2, and is the ℓ^2 limit of the f_i.

Given $\varepsilon > 0$, there is N sufficiently large so that $|f_i - f_j|_{\ell^2} < \varepsilon$ for all $i, j \geq N$. By a discrete version of Fatou’s lemma, for $i \geq N$,

$$\sum_{n} |f(n) - f_i(n)|^2 = \sum_{n} \lim_j |f_j(n) - f_i(n)|^2 = \sum_{n} \liminf_j |f_j(n) - f_i(n)|^2 \leq \liminf_j \sum_{n} |f_j(n) - f_i(n)|^2 \leq \liminf_j |f_j - f_i|_{\ell^2} \leq \liminf_j \varepsilon^2 = \varepsilon^2$$

Thus, $f - f_i \in \ell^2$, so $f = (f - f_i) + f_i \in \ell^2$. Then the previous computation shows that for given ε for $i \geq N$ we have $|f - f_i| \leq \varepsilon$. Thus, $f_i \to f$ in ℓ^2.

Discrete version of Fatou’s Lemma: We claim that for $[0, +\infty]$-valued functions f_j on $\{1, 2, 3, \ldots\}$,

$$\sum_{n=1}^{\infty} \liminf_{j} f_j(n) \leq \liminf_{j} \sum_{n=1}^{\infty} f_j(n)$$

Proof: Letting $g_j(n) = \inf_{j \geq n} f_j(n)$, certainly $g_j(n) \leq f_j(n)$ for all n, and $\sum_{n} g_j(n) \leq \sum_{n} f_j(n)$. Also, $g_1(n) \leq g_2(n) \leq \ldots$ for all n, and $\lim_{j} g_j(n) = \lim_{j} f_j(n)$. A discrete form of the Monotone Convergence Theorem, proven just below, is

$$\lim_{j} \sum_{n} g_j(n) = \sum_{n} \lim_{j} g_j(n)$$

Thus,

$$\sum_{n} \liminf_{j} f_j(n) = \sum_{n} \lim_{j} g_j(n) = \lim_{j} \sum_{n} g_j(n) = \liminf_{j} \sum_{n} g_j(n) \leq \liminf_{j} \sum_{n} f_j(n)$$

as claimed.

Similarly, we have

Discrete version of Lebesgue’s Monotone Convergence Theorem: For $[0, +\infty]$-valued functions f_j on $\{1, 2, 3, \ldots\}$, with $f_1(n) \leq f_2(n) \leq \ldots$ for all n,

$$\lim_{j} \sum_{n=1}^{\infty} f_j(n) = \sum_{n=1}^{\infty} \lim_{j} f_j(n) \quad \text{(allowing value } +\infty)$$

Proof: Each non-decreasing sequence $f_1(n) \leq f_2(n) \leq \ldots$ has a limit $f(n) \in [0, +\infty]$. Similarly, since $\sum_{n} f_j(n) \leq \sum_{n} f_{j+1}(n)$, the non-decreasing sequence of these sums has a limit $S = \lim_{j} \sum_{n} f_j(n)$. Since $f_j(n) \leq f(n)$, certainly $\sum_{n} f_j(n) \leq \sum_{n} f(n)$, and $S \leq \sum_{n} f(n)$.

Fix N, and put $g(n) = f(n)$ for $n \leq N$ and $g(n) = 0$ for $n > N$. For $\varepsilon > 0$, let

$$E_j = \{ n : \sum_n f_j(n) \geq (1 - \varepsilon) \cdot \sum_n g(n) \} \quad \text{(for } j = 1, 2, \ldots \}$$

Certainly $E_1 \subset E_2 \subset \ldots$, since $f_{j+1}(n) \geq f_j(n)$ for all n. We claim that $\bigcup E_j = \{ 1, 2, \ldots \}$: for $f(n) > 0,

$$\lim_j f_j(n) = f(n) > (1 - \varepsilon) \cdot f(n) \geq (1 - \varepsilon) \cdot g(n) \quad \text{(for all } n)$$

and for $f(n) = 0$, also $g(n) = 0$, and

$$f_1(n) \geq 0 \geq (1 - \varepsilon) g(n)$$

Then

$$\sum_n f_j(n) \geq \sum_{n \in E_j} f_j(n) \geq (1 - \varepsilon) \cdot \sum_{n \in E_j} g(n)$$

The set of n for which $g(n)$ is non-zero is finite, so there is j_0 such that for $j \geq j_0$

$$\sum_{n \in E_j} g(n) = \sum_n g(n) \quad \text{(for all } j \geq j_0)$$

That is, $\lim_j \sum_n f_j(n) \geq (1 - \varepsilon) \sum_n g(n)$. Then

$$S = \lim_j \sum_n f_j(n) \geq (1 - \varepsilon) \cdot \lim_j \sum_{n \in E_j} g(n) = (1 - \varepsilon) \cdot \sum_n g(n)$$

This holds for every $\varepsilon > 0$, so $S \geq \sum_n g(n) = \sum_{n \leq N} f(n)$. This holds for every N, so $S \geq \sum_n f(n)$. ///

[02.2] Show that the characteristic function χ_E of a measurable set E is measurable.

Discussion: For non-empty open $U \subset \mathbb{R}$, $\chi_E^{-1}(U)$ is the measurable set ϕ if U does not contain either 0 or 1. If $U \ni 1$ but $U \not\ni 0$, then $\chi_E^{-1}(U) = E$, which is measurable. If $U \ni 0$ but $U \not\ni 1$, then $\chi_E^{-1}(U) = E^c$, the complement of E, which is measurable. If U contains both 0 and 1, then $\chi_E^{-1}(U)$ is the whole domain space, which is measurable. ///

[02.3] Show that the product of two \mathbb{R}-valued measurable functions on \mathbb{R} is measurable.

Discussion: Let f, g be measurable functions. Let $\Delta : \mathbb{R} \to \mathbb{R}^2$ by $\Delta(x) = (x, x)$, $s : \mathbb{R}^2 \to \mathbb{R}$ by $m(x, y) = x \cdot y$, and $f \oplus g : \mathbb{R}^2 \to \mathbb{R}^2$ by $(f \oplus g)(x, y) = (f(x), g(y))$. Clearly $m \circ (f \oplus g) \circ \Delta = f \cdot g$, and $(f \cdot g)^{-1} = \Delta^{-1} \circ (f \oplus g)^{-1} \circ m^{-1}$.

For open $U \subset \mathbb{R}$, $m^{-1}(U) \subset \mathbb{R}^2$ is open, because m is continuous. Since \mathbb{R}^2 is countably based, and in fact has a countable basis consisting of rectangles with rational endpoints, so $m^{-1}(U)$ is a countable unions of rectangles $(a_i, b_i) \times (c_i, d_i)$. Then

$$(f \oplus g)^{-1} \circ m^{-1}(U) = (f \oplus g)^{-1} \left(\bigcup_i (a_i, b_i) \times (c_i, d_i) \right)$$

$$= \bigcup_i (f \oplus g)^{-1}(a_i, b_i) \times (c_i, d_i) = \bigcup_i f^{-1}(a_i, b_i) \times g^{-1}(c_i, d_i)$$

The sets $f^{-1}(a_i, b_i) \subset \mathbb{R}$ and $g^{-1}(c_i, d_i) \subset \mathbb{R}$ are Borel sets, so their product is a Borel set in \mathbb{R}^2. Then

$$\Delta^{-1}(E_1 \times E_2) = E_1 \cap E_2 \quad \text{(for } E_1, E_2 \text{ measurable in } \mathbb{R})$$
is measurable.

[02.4] Use Urysohn’s lemma to prove that \(C^0[a, b] \) is dense in \(L^1[a, b] \).

Discussion: By the Lebesgue definition of integrals, simple functions are dense in \(L^1[a, b] \), so it suffices to show that simple functions can be well approximated by continuous functions. Granting ourselves the (outer and inner) regularity of Lebesgue measure \(\mu \), for measurable \(E \) there are open \(U \) and compact \(K \) such that \(K \subset E \subset U \), and \(\mu(U) - \mu(K) < \varepsilon \). Invoke Urysohn to make a continuous function \(f \) taking values in \([0, 1]\) and \(f|_K = 1 \) and \(f = 0 \) off \(U \). Then

\[
\int_a^b |f - \text{ch}_E| = \int_K |f - \text{ch}_E| + \int_{E-K} |f - \text{ch}_E| + \int_{U-E} |f - \text{ch}_E| \leq \int_K |1 - 1| + \int_{E-K} 1 + \int_{U-E} 1
\]

\[
= \mu(E-K) + \mu(U-E) = \mu(U-K) < \varepsilon
\]
as desired.

[02.5] Comparing \(L^p \) spaces. Let \(1 \leq p, p' < \infty \). When is \(L^p[a, b] \subset L^{p'}[a, b] \) for finite intervals \([a, b]\) and Lebesgue measure? When is \(L^p(\mathbb{R}) \subset L^{p'}(\mathbb{R}) \)?

Discussion: Take \(p < p' \). We claim that \(L^p[a, b] \supset L^{p'}[a, b] \), with proper containment. The function \(f \) that is \((x-a)^{-\frac{1}{p'}} \) on \((a, b]\) and 0 off that interval is \(\text{not in } L^{p'} \), but is in \(L^p \). Given \(f \in L^{p'}[a, b] \), let \(E \) be the set of \(x \in [a, b] \) where \(|f(x)| \geq 1 \). Then \(\int_a^b |f|^p < \infty \) if and only if \(\int_E |f|^p < \infty \). On \(E \), \(|f|^p < |f|^{p'} \), so \(\int_E |f|^p < \infty \), and then also \(\int_a^b |f|^p < \infty \), so \(f \in L^p[a, b] \).

We claim that \(L^p(\mathbb{R}) \) and \(L^{p'}(\mathbb{R}) \) are not comparable for \(p \neq p' \). Take \(1 \leq p < p' \). On one hand, \(1/(1+|x|)^{1/p'+\varepsilon} \) is in \(L^{p'} \) for all \(\varepsilon > 0 \), but not in \(L^p \) for \(\varepsilon \) small enough so that \(\frac{1}{p'} + \varepsilon < \frac{1}{p} \). On the other hand, the function \(f \) that is \(x^{-\frac{1}{p'}} \) on \((0, 1]\) and 0 off that interval is \(\text{not in } L^p \), but is in \(L^{p'} \).

We claim that for \(1 \leq p < p' < \infty \), \(\ell^p \subset \ell^{p'} \), with strict containment. Indeed, \(f(n) = 1/n^p \) is not in \(\ell^p \), but is in \(\ell^{p'} \). Let \(E = \{ n \in \{1, 2, \ldots\} : |f(n)| < 1 \} \). Then \(f \in \ell^p \) if and only if the complement of \(E \) is finite, and if \(\sum_{n \in E} |f(n)|^p < \infty \). Certainly \(|f(n)|^p > |f(n)|^{p'} \) for \(n \in E \), and the complement of \(E \) is finite, so \(\sum_{n \in E} |f(n)|^p < \sum_{n \in E} |f(n)|^{p'} \), and \(f \in \ell^{p'} \).

[02.6] For positive real numbers \(w_1, \ldots, w_n \) such that \(\sum_i w_i = 1 \), and for positive real numbers \(a_1, \ldots, a_n \), show that

\[
a_1^{w_1} \cdots a_n^{w_n} \leq w_1 a_1 + \cdots + w_n a_n
\]

Discussion: This is a corollary of Jensen’s inequality, similar to the arithmetic-geometric mean, but with unequal weights. Namely, let \(X = \{1, 2, \ldots, n\} \) with measure \(\mu(i) = w_i \), and function \(f(i) = \log a_i \). Then Jensen’s inequality is

\[
\left(\sum_{i=1}^n w_i \cdot \log a_i \right) = \sum_{i=1}^n w_i \cdot e^{\log a_i}
\]

which simplifies to the assertion.

[02.7] In \(\ell^2 \), show that the point in the closed unit ball closest to a point \(v \) not inside that ball is \(v/|v|_{\ell^2} \).

Discussion: The minimum principle assures that there is a unique closest point \(w \) in the closed unit ball \(B \) to \(v \), because \(B \) is convex, closed, non-empty, and \(v \) is not in \(B \).

Suppose \(w \) is closer than \(v/|v| \). Then

\[
|v|^2 - 2|v| + 1 = |v - \frac{v}{|v|}|^2 > |v-w|^2 = |v|^2 - (v,w) - (w,v) + |w|^2 = |v|^2 - (v,w) - (w,v) + 1
\]
Thus, $2|v| < \langle v, w \rangle + \langle w, v \rangle$

Thus, the sum of the two inner products is positive, and by Cauchy-Schwarz-Bunyakowsky:

$$2|v| < \langle v, w \rangle + \langle w, v \rangle = |\langle v, w \rangle + \langle w, v \rangle| \leq 2|v| \cdot |w|$$

Thus, $1 < |w|$, which is impossible.

[02.8]

For a measurable set $E \subset [0, 2\pi]$, show that

$$\lim_{n \to \infty} \int_E \cos nx \, dx = 0 = \lim_{n \to \infty} \int_E \sin nx \, dx$$

Discussion: This is an instance of a Riemann-Lebesgue lemma, namely, that Fourier coefficients of an L^2 function on $[0, 2\pi]$ go to 0. Here, the L^2 function is the characteristic function of E, and we use sines and cosines instead of exponentials.

[02.9]

One form of the sawtooth function is $f(x) = x - \pi$ on $[0, 2\pi]$. Compute the Fourier coefficients $\hat{f}(n)$.

Discussion: We have the orthonormal basis $e_n(x) = \frac{1}{\sqrt{2\pi}} e^{inx}$ with $n \in \mathbb{Z}$ for the Hilbert space $L^2[0, 2\pi]$. The Fourier coefficients are determined by Fourier’s formula

$$\hat{f}(n) = \int_0^{2\pi} f(x) \frac{e^{-inx}}{\sqrt{2\pi}} \, dx$$

For $n = 0$, this is 0. For $n \neq 0$, integrate by parts, to get

$$\hat{f}(n) = \left[f(x) \cdot \frac{e^{-inx}}{\sqrt{2\pi} \cdot (-in)} \right]_0^{2\pi} = \left[\frac{1}{\sqrt{2\pi} \cdot (-in)} \right]_0^{2\pi}$$

$$= \left(\frac{\pi \cdot 1}{\sqrt{2\pi} \cdot (-in)} - \frac{-\pi \cdot 1}{\sqrt{2\pi} \cdot (-in)} \right) = \frac{2\pi}{\sqrt{2\pi} \cdot (-in)} = \frac{\sqrt{2\pi}}{-in}$$

The L^2 norm of f is

$$\int_0^{2\pi} (x - \pi)^2 \, dx = \left[\frac{(x - \pi)^3}{3} \right]_0^{2\pi} = \frac{\pi^3 - (-\pi)^3}{3} = \frac{2\pi^3}{3}$$

Thus, by Parseval,

$$\sum_{n \neq 0} \left| \frac{\sqrt{2\pi}}{-in} \right|^2 = \frac{2\pi^3}{3}$$

This simplifies first to

$$2 \sum_{n \geq 1} \frac{2\pi}{n^2} = \frac{2\pi^3}{3}$$

and then to

$$\sum_{n \geq 1} \frac{1}{n^2} = \frac{\pi^2}{6}$$

That is, Parseval applied to the sawtooth function evaluates $\zeta(2)$.

///
[02.10] For fixed $y \in [0, 1]$, show that there is no $f_y \in L^2[0, 1]$ so that $\langle g, f_y \rangle = g(y)$ for all $g \in L^2[0, 1]$.

Discussion: Part of the issue here is whether L^2 functions truly have meaningful pointwise values at all, and we generally imagine that they do not, although such a negative fact may be hard to express formulaically.

Among many approaches, one is to suppose such f exists. Choose an orthonormal basis for $L^2[0, 1]$ consisting of the continuous functions $\psi_n(x) = e^{2\pi i nx}$, and see what the condition $\langle f_y, \psi_n \rangle = \psi_n(y)$ imposes on the alleged f_y. Indeed, this condition completely determines the Fourier coefficients of the alleged f_y: since $\psi_n \in L^2[0, 1]$, $\langle \psi_n, f_y \rangle = \psi_n(y)$, and then

$$\hat{f}_y(n) = \int_0^1 f_y(x) \overline{\psi_n(x)} \, dx = \langle \psi_n, f_y \rangle = \psi_n(y)$$

so

$$f_y = \sum_{n \in \mathbb{Z}} \overline{\psi_n(y)} \cdot \psi_n \quad \text{(with equality in an L^2 sense)}$$

By Parseval,

$$|f_y|_{L^2}^2 = \sum_n |\psi_n(y)|^2 = +\infty$$

since $|\psi_n(y)| = 1$ for all n. Thus, there can be no such f_y in L^2. ///

In contrast to the previous example’s outcome: Let V be the complex vector space of power series $f(z) = \sum_{n \geq 0} c_n z^n$ convergent on the open unit disk D in \mathbb{C}, having finite norm

$$|f| = \left(\int_D |f(x + iy)|^2 \, dx \, dy \right)^{\frac{1}{2}}$$

with hermitian inner product

$$\langle f, g \rangle = \int_D f(x + iy) \overline{g(x + iy)} \, dx \, dy$$

It is not hard to show that $\langle z^m, z^n \rangle = 0$ unless $m = n$, in which case it is $\frac{2\pi}{2n+1}$, and that $\psi_n(z) = z^n \cdot \frac{\sqrt{2n+1}}{\sqrt{2\pi}}$ is an orthonormal basis for V. The sum $f_w(z) = \sum_{n \geq 0} \psi_n(z) \overline{\psi_n(w)}$ converges absolutely for $z, w \in D$, and

$$\langle g(-), f_w \rangle = g(w) \quad \text{(for w in the disk)}$$

For each fixed $w \in D$, pointwise evaluation $g \to g(w)$ is a continuous linear functional on V.

5