Examples discussion 09

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/

[This document is http://www.math.umn.edu/~garrett/m/real/examples_2017-18/real-disc-09.pdf]

[09.1] Show that the translation action \(T_x f(y) = f(y + x) \) on the Banach space \(C_o^{b,d}(\mathbb{R}) \) of bounded continuous functions on \(\mathbb{R} \) is not continuous. That is, \(\mathbb{R} \times C_o^{b,d}(\mathbb{R}) \to C_o^{b,d}(\mathbb{R}) \) by \(x \to T_x f \) is not continuous. In particular, find a particular \(f \in C_o^{b,d}(\mathbb{R}) \) with \(|f|_{C^o} = 1 \) such that, there is a sequence \(\delta_n \to 0 \) of non-zero numbers \(\delta_n \) such that \(|T_{\delta_n} f - f|_{C^o} = 1 \).

Discussion: The point is that on a non-compact topological space there may exist continuous, bounded, but not uniformly continuous functions, such as \(f(x) = \sin(x^2) \). Let \(x_n = n \cdot \sqrt{\pi} \) and let \(\delta_n > 0 \) be a sequence of small positive reals going to 0 such that \((x_n + \delta_n)^2 = x_n^2 + \frac{\pi}{2^2} \). Then \(\sin(x_n^2) = 0 \), while \(\sin((x_n + \delta_n)^2) = 1 \), so the sup norm of \(\sin(x^2) - \sin((x + \delta_n)^2) \) is 1.

[9.1] Remark: Nevertheless, the translation action is continuous on \(C_o^{b,d}(\mathbb{R}) \), which we see as follows. Given \(f \in C_o^{b,d}(\mathbb{R}) \), for given \(\varepsilon > 0 \), by a previous example there is \(g \in C_o^{b,d}(\mathbb{R}) \) such that \(\sup x \in \mathbb{R} |g(x) - f(x)| < \varepsilon \).

Since \(g \) is compactly supported, it is uniformly continuous, so there is \(\delta > 0 \) such that \(|x - y| < \delta \) implies \(|g(x) - g(y)| < \varepsilon \). Then for \(|h| < \delta \),

\[
\sup_{x \in \mathbb{R}} |f(x + h) - f(x)| \leq \sup_{x \in \mathbb{R}} |f(x + h) - g(x + h) - (f(x) - g(x))| + \sup_{x \in \mathbb{R}} |g(x + h) - g(x)|
\]

\[
\leq \sup_{x \in \mathbb{R}} |f(x + h) - g(x + h)| + \sup_{x \in \mathbb{R}} |f(x) - g(x)| + \sup_{x \in \mathbb{R}} |g(x + h) - g(x)| < \varepsilon + \varepsilon + \varepsilon
\]

This is half the desired continuity, in contrast to the problem with \(C_o^{b,d}(\mathbb{R}) \). Similarly, the translation action \(\mathbb{R} \times C_o^{b,d}(\mathbb{R}) \) is jointly continuous in both arguments.

[09.2] Let \(r_1, r_2, r_3, \ldots \) be an enumeration of the rational numbers inside the interval \([0, 1]\). Define \(T : l^2 \to l^2 \) by \(T(r_1, c_2, \ldots) = (r_1 c_1, r_2 c_2, \ldots) \). Show that \(T \) is a continuous/bounded linear operator, is self-adjoint, has eigenvalues exactly the \(r_1, r_2, r_3, \ldots \), and continuous spectrum the whole interval \([0, 1]\) (with rationals removed, if one insists on disjointness of discrete and continuous spectrum).

Discussion: Since the set \(\{|r_1|, |r_2|, \ldots\} \) is bounded by 1, the operator norm of \(T \) is at most 1, so it is bounded, hence continuous. Since the \(r_n \) are all real, the operator is self-adjoint:

\[
\langle T(a_1, a_2, \ldots), (b_1, b_2, \ldots) \rangle = \langle (r_1 a_1, r_2 a_2, \ldots), (b_1, b_2, \ldots) \rangle = \sum_n r_n a_n \cdot \overline{b_n}
\]

When \(\lambda \cdot (c_1, c_2, \ldots) = T(c_1, c_2, \ldots) = (r_1 c_1, r_2 c_2, \ldots) \), necessarily \(\lambda \cdot c_n = r_n \cdot c_n \) for all \(n \). When \(c_n \neq 0 \), this implies \(\lambda = r_n \). Since the \(r_n \) are distinct, there can be (at most) one index \(n \) for which \(c_n \neq 0 \), and then \(\lambda = r_n \). Conversely, every \(r_n \) is obviously an eigenvalue.

Since we know that the whole spectrum is closed in \(\mathbb{C} \), it contains at least the closure of the rationals in \([0, 1]\), namely, \([0, 1]\) itself. Since \(T \) is self-adjoint, its spectrum is contained in \(\mathbb{R} \). [1] Since the spectrum is bounded by \(|T|_{op} = 1 \), it is contained in \([-1, 1]\).

[1] The proof that self-adjoint operators \(T \) have spectrum inside \(\mathbb{R} \) has more content than just the analogous assertion about eigenvectors. For \(T v = \lambda v \) with \(v \neq 0 \), of course

\[
\lambda(v, v) = \langle \lambda v, v \rangle = \langle T v, v \rangle = \langle v, T v \rangle = \langle v, \lambda v \rangle = \overline{\lambda(v, v)}
\]

shows that any eigenvalues are real. Since self-adjoint operators have no residual spectrum, to find the rest of the
To see that \(\lambda \in [-1, 0) \) is not in the spectrum, in that \((T - \lambda)(c_1, c_2, \ldots) = ((r_1 - \lambda)c_1, (r_2 - \lambda)c_2, \ldots) \), we have \(|r_n - \lambda| \geq |\lambda| > 0 \), so the inverse \((T - \lambda)^{-1} \) can be written down immediately: \((T - \lambda)^{-1}(c_1, c_2, \ldots) = ((r_1 - \lambda)^{-1}c_1, (r_2 - \lambda)^{-1}c_2, \ldots) \) and there is a uniform upper bound \(|(r_n - \lambda)^{-1}| \leq |\lambda|^{-1} \). Finally, given irrational \(\lambda \in [0, 1) \), let \(r_{n_1}, r_{n_2}, \ldots \) be rationals such that \(r_{n_i} \to \lambda \). With standard basis \(\{e_n\} \) for \(\ell^2 \), we claim that \(\{e_{n_i}\} \) is an approximate eigenvector for \(\lambda \): given \(\varepsilon > 0 \), let \(N \) be sufficiently large so that \(|r_{n_i} - \lambda| < \varepsilon \) for \(i \geq N \). For \(n_i \geq N \),

\[
|(T - \lambda)e_{n_i}| = |(r_{n_i} - \lambda)e_{n_i}| = |r_{n_i} - \lambda| |e_{n_i}| = |r_{n_i} - \lambda| < \varepsilon
\]

Thus, indeed, \((T - \lambda)e_{n_i} \to 0 \), and the \(e_{n_i} \) give an approximate identity for \(\lambda \), so \(\lambda \) is in the spectrum.

//

9.3 Let \(r_1, r_2, r_3, \ldots \) be a bounded sequence of complex numbers. Define \(T : \ell^2 \to \ell^2 \) by \(T(c_1, c_2, \ldots) = (r_1c_1, r_2c_2, \ldots) \). Show that \(T \) is compact if and only if \(r_n \to 0 \).

Discussion: Let \(e_1, e_2, \ldots \) be the standard (Hilbert-space) basis for \(\ell^2 \). If the \(r_n \) do not go to 0, then there is a subsequence \(r_{n_1}, r_{n_2}, \ldots \) bounded away from 0. Since \(T \) is compact, the images \(Te_{n_i} = r_{n_i}e_{n_i} \) must have a convergent subsequence. But \(|r_{n_i}e_{n_i} - r_{n_j}e_{n_j}|^2 = |r_{n_i}|^2 + |r_{n_j}|^2 \) for \(i \neq j \), and this is bounded away from 0, so there is no convergent subsequence, contradicting the compactness of \(T \). Thus, in fact, \(r_n \to 0 \).

For the converse, perhaps the most economical approach is to observe that \(T \) is an operator-norm limit of finite-rank operators, hence compact:

\[
T_n(c_1, c_2, \ldots, c_n, c_{n+1}, \ldots) = (c_1, c_2, \ldots, c_n, 0, 0, \ldots)
\]

The estimate on the operator norms is

\[
|T - T_n|_{op} = \sup_{|v| = 1} |(0, 0, \ldots, 0, 0, 0, \ldots)| = \sup_{k \geq n} |r_k| \to 0
\]

Less efficiently, we can refer to definitions, and use the total boundedness criterion for compact closure. Given \(\varepsilon > 0 \), let \(N \) be large enough so that \(|r_n| < \varepsilon \) for \(n \geq N \). Write \(v = (v_1, v_2, \ldots) \in \ell^2 \) as

\[
v = \underbrace{(v_1, \ldots, v_N, 0, 0, \ldots)}_{v'} + \underbrace{(0, \ldots, 0, v_{N+1}, \ldots, v_{N+2}, \ldots)}_{N}
\]

Let \(B' \) be the intersection of the unit ball \(B \subset \ell^2 \) with the copy of \(\mathbb{C}^N \subset \ell^2 \) with non-zero components only at the first \(N \) places. Let \(B'' \) be the intersection of \(B \) with the subspace of \(\ell^2 \) with 0 entries at the first \(N \) places. Certainly \(B' + B'' \supset B \) and \(B' \perp B'' \).

By design, \(|Tv''| \leq \varepsilon \) for \(v'' \in B'' \). Since \(TB' \) is a bounded subset of a finite-dimensional space \(\mathbb{C}^N \), it has compact closure, so is totally bounded, so can be covered by finitely-many \(\varepsilon \)-balls \(U_1, \ldots, U_k \). Then \(TB \subset TB' + TB'' \subset \bigcup (U_1 + TB'') \cup \ldots \cup (U_k + TB'') \), and every \(U_i + TB'' \) is contained in a 2\(\varepsilon \)-ball. Thus, \(TB \) is totally bounded, hence, has compact closure. //

Spectrum it suffices to identify approximate eigenvectors. Note that for self-adjoint \(T \) always \(\langle Tv, v \rangle = \langle v, Tv \rangle \), so \(\langle Tv, v \rangle \) is real. Then for \((T - \lambda)v \to 0 \), certainly \(\langle (T - \lambda)v_n, v_n \rangle \to 0 \), so the imaginary parts go to 0. These are

\[
\text{Im} \langle (T - \lambda)v_n, v_n \rangle = \text{Im} \langle Tv_n, v_n \rangle + \text{Im} \langle \lambda \cdot (v_n, v_n) \rangle = 0 + \text{Im} \langle \lambda \cdot (v_n, v_n) \rangle
\]

Since \(|v_n| \) are bounded away from 0, there can be an approximate identity only for \(\lambda \in \mathbb{R} \). //

[2] For such a simple operator, a similar device shows that \(\lambda \notin \mathbb{R} \) is not in the spectrum.
[09.4] Let T be a compact operator $T : V \to W$ for Hilbert spaces V, W. For S a continuous/bounded operator on V, show that $T \circ S : V \to W$ is compact. For R a continuous/bounded operator on W, show that $R \circ T : V \to W$ is compact.

Discussion: For $T \circ S$, the image of the unit ball under S is contained in some ball $c \cdot B$, where B is the unit ball, because S is bounded. Since T is linear, $T(c \cdot B) = c \cdot TB$. Since TB is pre-compact, its continuous image under multiplication by c is also pre-compact. Proof: for $c = 0$, we’re done. For $c > 0$, given a finite cover of TB by balls $w_i + B_e$ where B_e is the ball of radius $\varepsilon > 0$ centered at 0. The images $c \cdot (w_i + B_e) = cw_i + cB_e$ cover $c \cdot TB$, and have radius $c \cdot \varepsilon$. Replacing ε by ε/c gives balls of radius ε covering $c \cdot TB$.

For $R \circ T$, similarly as in the previous case, given a finite cover of TB by balls $w_i + B_e$ of radius $\varepsilon > 0$, the images $R(w_i + B_e) = Rw_i + RB_e$ are contained in balls $Rw_i + cB_e$, where $c = |R|_{op}$ will suffice. ///

[09.5] Let S, T be two compact, self-adjoint operators on a Hilbert space, and $ST = TS$. Show that there is an orthonormal basis for V consisting of simultaneous eigenfunctions for S, T.

Discussion: The Hilbert space V is the closure of the orthogonal direct sum of eigenspaces V_λ for T. For $\lambda \neq 0$, V_λ is finite-dimensional, so is necessarily closed, and V_0 is the orthogonal complement of the sum of all other eigenspaces, so is closed. Since $ST = TS$, we find that S stabilizes each V_λ:

$$T(Sv) = (TS)v = (ST)v = S(Tv) = S(\lambda v) = \lambda \cdot Sv \quad \text{(for all } v \in V_\lambda)$$

[9.2] Claim: The restriction of a compact operator to a closed subspace $W \subset V$ stabilized by it is still compact.

Proof: With B' the closed unit ball of W and B the closed unit ball of V, $TB' \subset TB$. Using the total-boundedness criterion for precompactness, given $\varepsilon > 0$, TB is covered by finitely-many ε-balls $v_i + B_e$. Among the intersections $W \cap (v_i + B_e)$, the non-empty ones are open balls of radius at most ε. Thus, TB' is a precompact set, and $T|_W$ is a compact operator. ///

Thus, S is a compact operator on each V_λ, so every V_λ has an orthonormal basis of S-eigenvectors. These are also λ-eigenvectors for T, so they are simultaneous eigenvectors. ///

[09.6] Recall the proof that the Hilbert cube

$$C = \{(z_1, z_2, \ldots) \in \ell^2 : |z_n| \leq \frac{1}{n}\}$$

is compact. More generally, for any sequence of positive reals r_n,

$$C(r) = \{(z_1, z_2, \ldots) \in \ell^2 : |z_n| \leq r_n\}$$

is compact if and only if $\sum_n |r_n|^2 < \infty$.

Discussion: Use the total boundedness criterion. Given $\varepsilon > 0$, by convergence of $\sum_n \delta_n^2$, there is n_0 large enough so that $\sum_{n \geq n_0} r_n^2 < \varepsilon^2$. The set

$$C_{n_0} = \{(z_1, z_2, \ldots, z_{n_0}) \in \mathbb{R}^{n_0} : |z_n| \leq r_n\}$$

is a compact subset of \mathbb{C}^{n_0}, so certainly has a finite cover by open balls of radius ε. Let the centers of these balls be w_1, \ldots, w_N. Let $j : \mathbb{C}^{n_0} \to \ell^2$ be the inclusion $j(z_1, \ldots, z_{n_0}) = (z_1, \ldots, z_{n_0}, 0, 0, \ldots)$. Then we claim that the open balls of radius 2ε at $j(w_1), j(w_2), \ldots, j(w_N)$ cover $C(r)$. Indeed, given $z = (z_1, z_2, \ldots) \in C(r)$,
write $z = j(z') + z''$ where $z' = (z_1, \ldots, z_{n_0})$ and $z'' = z - j(z') = (0, \ldots, 0, z_{n_0+1}, \ldots)$. There is at least one of the w_js within ε of z'; let w_{j_0} be such. By the triangle inequality for the norm $| \cdot |_{L^2}$ on ℓ^2,
\[
d(z, j(w_{j_0})) = |z - j(w_{j_0})|_{L^2} = |j(z') + z'' - j(w_{j_0})|_{L^2} \leq |j(z') - j(w_{j_0})|_{L^2} + |z''|_{L^2} = |z' - w_{j_0}|_{\mathbb{R}^{n_0}} + |z''|_{L^2} < \varepsilon + \varepsilon
\]
Thus, $C(r)$ can be covered by finitely-many open balls of radius 2ε.

[09.7] First, for Schwartz φ on \mathbb{R}^n and u a tempered distribution on \mathbb{R}^n, characterize $\varphi * u$. Show that $\varphi \hat{*} \check{u} = \hat{\varphi} \cdot \check{u}$, where the latter multiplication is that induced by duality: $(\hat{\varphi} \cdot \check{u})(\psi) = \hat{u}(\hat{\varphi} \cdot \psi)$ for $\psi \in \mathcal{S}$. Explain why the union $H^{-\infty}$ of Sobolev spaces is inside the space of tempered distributions, and why \hat{u} has pointwise values for $u \in H^{-\infty}$.

Discussion: To anticipate a characterization of $\varphi * u$, we can examine $\varphi * u_f$ where u_f is integrate-against (for example) a locally integrable function of moderate growth, since the characterization for tempered distributions should extend (continuously...) that for distributions given by integrate-against-functions. Writing $f^\theta(x) = f(-x)$ to avoid confusion with Fourier transform notations, for $\psi \in \mathcal{S}$, invoking Fubini-Tonelli as needed to change order of integration,
\[
(\varphi * u_f)(\psi) = \int f (\varphi * u_f) \psi = \int \int \varphi(x - y) f(y) \psi(x) \, dy \, dx = \int \int \varphi^\theta(y - x) f(y) \psi(x) \, dx \, dy
\]
\[
= \int (\varphi^\theta * \psi)(y) f(y) \, dy \, dx = u_f(\varphi^\theta * \psi)
\]
It is important to note that $\varphi^\theta * \psi$ (with or without the θ) is still a Schwartz function. (One might reflect on the easiest way to be sure of this...) Thus, we can specify the tempered distribution $\varphi * u$ by $(\varphi * u)(\psi) = u(\varphi^\theta * \psi)$.

Since this extends the corresponding operation on distributions given by integration-against functions, but we can check once-again via this definition: for $\alpha, \beta \in \mathcal{S}$,
\[
(\alpha * (\beta * u))(\psi) = (\beta * u)(\alpha^\theta * \psi) = u(\beta^\theta * (\alpha^\theta * \psi)) = u((\beta^\theta * \alpha^\theta) * \psi)
\]
by associativity of convolution on Schwartz functions, which by elementary (change-of-variables) properties of θ is
\[
u((\alpha * \beta)^\theta) * \psi) = ((\alpha * \beta) * u)(\psi)
\]
proving the associativity.

Letting F denote Fourier transform when notationally convenient,
\[
\hat{\varphi} * u(\psi) = (\varphi * u)(\hat{\psi}) = u(\varphi^\theta * \hat{\psi}) = u(F(\hat{\varphi} \cdot \psi))
\]
since $\varphi^\sim = \varphi^\theta$. This is
\[
\hat{u}(\hat{\varphi} \cdot \psi) = (\hat{\varphi} \cdot \check{u})(\psi)
\]
by the definition of multiplication of tempered distributions by Schwartz functions, extending pointwise multiplication.

Since Fourier transform maps \mathcal{S} isomorphically to itself, and since \mathcal{S} is certainly inside all the weighted L^2 spaces used to define the Sobolev spaces H^s, we have $\mathcal{S} \subset H^\infty$.

Since $H^\infty \subset \mathcal{E} = C^\infty$ by Sobolev imbedding, taking duals gives $\mathcal{E}^* \subset (H^\infty)^* = H^{-\infty}$. In particular, since distributions in $H^{-\infty}$ have Fourier transforms in weighted L^2 spaces, hence have pointwise values almost-everywhere, compactly-supported distributions have Fourier transforms with pointwise values almost-everywhere. (In fact, there is a Paley-Wiener theorem for compactly-supported distributions, due to L. Schwartz.)
Thus, for $u \in \mathcal{E}^*$, or even $u \in H^{-\infty}$, for $\varphi \in \mathcal{S}$, the Fourier transform $\hat{\varphi} \ast \hat{u} = \hat{\varphi} \cdot \hat{u}$ has pointwise values almost-everywhere, and thus it makes sense to assert that

$$\int_{\mathbb{R}} |\hat{\varphi} \ast \hat{u}|^2 = \int_{\mathbb{R}} |\hat{\varphi} \cdot \hat{u}|^2$$