(October 11, 2017)

Examples 03

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/

[This document is
http://www.math.umn.edu/~garrett/m/real/examples_2017-18/real-ex-03.pdf]

For feedback on these examples, please get your write-ups to me by Wednesday, 18 Oct 2017.

[03.1] Show that every vector subspace of \(\mathbb{R}^n \) and/or \(\mathbb{C}^n \) is (topologically) closed.

[03.2] For a subspace \(W \) of a Hilbert space \(V \), show that \((W^\perp)^\perp\) is the closure of the subspace \(W \) in \(V \).

[03.3] Show that for \(0 < x < 1 \)
\[\sum_{n \geq 1} \frac{\sin 2\pi nx}{n} = \pi \cdot \left(\frac{1}{2} - x \right) \]

[03.4] Let \(c_1, c_2, \ldots \) be positive real, converging monotonically to 0. For \(0 < x < 1 \), prove that \(\sum_{n \geq 0} c_n e^{2\pi inx} \) converges pointwise.

[03.5] Show that the sup-norm completion of the space \(C_0^c(\mathbb{R}) \) of compactly-supported continuous functions is the space \(C_0^\infty(\mathbb{R}) \) of continuous functions going to 0 at infinity. An analogous assertion and argument should hold for any topological space in place of \(\mathbb{R} \).

[03.6] Compute \(\int_{\mathbb{R}} \left(\frac{\sin x}{x} \right)^2 \, dx \). (Hint: use Plancherel.)

[03.7] For \(f \in L^2(\mathbb{R}) \) and \(t \in \mathbb{R} \), show that there is a constant \(C \) (depending on \(f \)) such that
\[\left| \int_{t-\delta}^{t+\delta} f(x) \, dx \right| < C \cdot \sqrt{\delta} \]
Formulate and prove the corresponding assertion for \(L^p \) with \(1 < p < \infty \).

[03.8] For \(f \in L^1(\mathbb{R}) \) and \(t \in \mathbb{R} \), show that, given \(\varepsilon > 0 \), there is \(\delta > 0 \) such that
\[\left| \int_{t-\delta}^{t+\delta} f(x) \, dx \right| < \varepsilon \]
Sharpen the first example to show that
\[\int_{t-\delta}^{t+\delta} f(x) \, dx = o(\sqrt{\delta}) \quad \text{ as } \delta \to 0^+ \]
where Landau’s little-o notation is that \(f(x) = o(g(x)) \) as \(x \to a \) when \(\lim_{x \to a} f(x)/g(x) = 0 \).