(November 4, 2017)

Examples 05

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/

For feedback on these examples, please get your write-ups to me by Wednesday, 15 Nov 2017.

[05.1] Give a persuasive proof that the function
\[f(x) = \begin{cases}
0 & \text{for } x \leq 0 \\
\exp(-1/x) & \text{for } x > 0
\end{cases} \]
is infinitely differentiable at 0. Use this kind of construction to make a smooth step function: 0 for \(x \leq 0 \) and 1 for \(x \geq 1 \), and goes monotonically from 0 to 1 in the interval \([0,1]\). Use this to construct a family of smooth cut-off functions \(\{ f_n : n = 1, 2, 3, \ldots \} \): for each \(n \), \(f_n(x) = 1 \) for \(x \in [-n,n] \), \(f_n(x) = 0 \) for \(x \not\in [-n+1,n+1] \), and \(f_n \) goes monotonically from 0 to 1 in \([-n+1,-n]\) and monotonically from 1 to 0 in \([n,n+1]\).

[05.2] With \(g(x) = f(x + x_0) \), express \(\tilde{g} \) in terms of \(\hat{f} \), first for \(f \in \mathcal{S}((\mathbb{R}^n)^*) \), then for \(f \in \mathcal{S}((\mathbb{R}^n)^*)^* \).

[05.3] Let \(V \) be a vector space, with norms \(|\cdot|_1 \) and \(|\cdot|_2 \). Suppose that \(|v|_2 \geq |v|_1 \) for all \(v \in V \). Show that the identity map \(i : V \to V \) is continuous, where the source is given the \(|\cdot|_2 \) topology and the target is given the \(|\cdot|_1 \) topology. Show that if a sequence \(\{ v_n \} \) in \(V \) is \(|\cdot|_2 \)-Cauchy, then it is \(|\cdot|_1 \)-Cauchy. Let \(V_j \) be the completion of \(V \) with respect to the metric \(|v - v'|_j \). Show that we can extend \(i \) by continuity to a continuous linear map \(I : V_2 \to V_1 \), that is, by

\[I(V_2 \text{-limit of } V_2 \text{-Cauchy sequence } \{ v_n \}) = V_1 \text{-limit of } \{ v_n \} \]

[05.4] Solve \(-u'' + u = \delta \) on \(\mathbb{R} \). (Hint: use Fourier transform, and grant that \(\hat{\delta} = 1 \).)

[05.5] Show that \(u'' = \delta_Z \) has no solution on the circle \(\mathbb{T} \). (Hint: Use Fourier series, granting the Fourier expansion of \(\delta_Z \).) Show that \(u'' = \delta_Z - 1 \) does have a solution.

[05.6] On the circle \(\mathbb{T} \), show that \(u'' = f \) has a unique solution for all \(f \in L^2(\mathbb{T}) \) orthogonal to the constant function 1.

[05.7] The sawtooth function is first defined on \([0,1]\) by \(\sigma(x) = x - \lfloor \frac{x}{\frac{1}{2}} \rfloor \), and then extended to \(\mathbb{R} \) by periodicity so that \(\sigma(x+n) = \sigma(x) \) for all \(x \in \mathbb{R} \) and \(n \in \mathbb{Z} \). After recalling its Fourier expansion, describe the derivatives \(\sigma' \) and \(\sigma'' \) of \(\sigma \).

[05.8] Show that \(e^{-\varepsilon x^2} \to 1 \) as \(\varepsilon \to 0^+ \) in the \(\mathcal{S}^* \) topology. Compute the Fourier transforms of the functions \(e^{-\varepsilon x^2} \), and show that they go to \(\delta \) in the \(\mathcal{S}^* \) topology. Obtain, again, as a corollary, the fact that \(\hat{1} = \delta \) (extended Fourier transform).

[05.9] Compute \(\widehat{\cos x} \). (Hint: write \(\cos x \) in terms of complex exponentials, and observe that these complex exponentials are the Fourier transforms of certain translates of \(\delta \).)

[05.10] Smooth functions \(f \in \mathcal{E} \) act on distributions \(u \in \mathcal{D}(\mathbb{R})^* \) by a dualized form of pointwise multiplication: \((f \cdot u)(\varphi) = u(f \varphi) \) for \(\varphi \in \mathcal{D}(\mathbb{R}) \). Show that if \(x \cdot u = 0 \), then \(u \) is supported at 0, in the sense that for \(\varphi \in \mathcal{D} \) with spt \(\varphi \not\in 0 \), necessarily \(u(\varphi) = 0 \). Thus, by the theorem classifying such distributions, \(u \) is a linear combination of \(\delta \) and its derivatives. Show that in fact \(x \cdot u = 0 \) implies that \(u \) is a multiple of \(\delta \) itself.