Examples discussion 02

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/

October 28, 2018

[This document is http://www.math.umn.edu/~garrett/m/real/examples_2018-19/real-disc-02.pdf]

[02.1] The space of continuous functions on \mathbb{R} going to 0 at infinity is

$$C^o_0(\mathbb{R}) = \{ f \in C^o(\mathbb{R}) : \text{for every } \varepsilon > 0 \text{ there is } T \text{ such that } |f(x)| < \varepsilon \text{ for all } |x| \geq T \}$$

Show that the closure of $C^o_c(\mathbb{R})$ in the space $C^o_{\text{bdd}}(\mathbb{R})$ of bounded continuous functions with sup norm, is $C^o_0(\mathbb{R})$.

Discussion: The argument for this is general enough that we can replace \mathbb{R} by a more general topological space X, probably locally compact and Hausdorff so that Urysohn’s lemma assures us a good supply of continuous functions for auxiliary purposes. Then $C^o_0(X)$ is defined to be the collection of continuous functions f such that, given $\varepsilon > 0$, there is a compact $K \subset X$ such that $|f(x)| < \varepsilon$ for $x \not\in K$.

First, show that any $f \in C^o_0(\mathbb{R})$ is a sup-norm limit of functions from $C^o_0(\mathbb{R})$. Given $\varepsilon > 0$, let K be sufficiently large so that $|f(x)| < \varepsilon$ for $x \not\in K$. We claim that there is an open $U \supset K$ with compact closure \overline{U} (which would be obvious on \mathbb{R} or \mathbb{R}^n). For each $x \in K$, let $U_x \ni x$ be an open set with compact closure (using the local compactness). By compactness of K, there is a finite subcover $K \subset U_{x_1} \cup \ldots \cup U_{x_n}$. Then the closure of $U = U_{x_1} \cup \ldots \cup U_{x_n}$ is compact, as claimed. Then, invoking Urysohn’s Lemma, let φ be a continuous function on X taking values in the interval $[0,1]$, that is 1 on K, and 0 off U, so φ has compact support. Then $\varphi \cdot f$ is continuous and has compact support, and

$$\sup_{x \in X} |f(x) - \varphi(x) \cdot f(x)| \leq \sup_{x \in K} |f(x) - \varphi(x) \cdot f(x)| + \sup_{x \not\in K} |f(x) - \varphi(x) \cdot f(x)| = 0 + \sup_{x \not\in K} |f(x) - \varphi(x) \cdot f(x)|$$

$$\leq \sup_{x \not\in K} |1 - \varphi| \cdot \sup_{x \not\in K} |f(x)| < 1 \cdot \varepsilon$$

That is, we can approximate f to within ε, as claimed.

On the other hand, now show that any sup-norm Cauchy sequence of $f_n \in C^o_0(X)$ has a pointwise limit f in $C^o_0(X)$. First, on any compact, the limit of the f_n’s is uniform pointwise, so is continuous on compacts. Since every point $x \in X$ has a neighborhood U_x with compact closure, the pointwise limit is continuous on U_x. Thus, the pointwise limit is continuous at every point, hence continuous. Given $\varepsilon > 0$, take n_0 sufficiently large so that $\sup_{x \in X} |f_m(x) - f_n(x)| < \varepsilon$ for all $m,n \geq n_0$. Let K be the support of f_{n_0}. Then

$$\sup_{x \not\in K} |f(x)| = \sup_{x \not\in K} |f(x) - f_{n_0}(x)| \leq \sup_{x \in X} |f(x) - f_{n_0}| \leq \varepsilon$$

Thus, the pointwise limit goes to 0 at infinity. ///

[02.2] Show that $|\int_a^b f|^2 \leq |b-a| \cdot \int_a^b |f|^2$.

Discussion: This is the Cauchy-Schwarz-Bunyakowsky inequality on $L^2[a,b]$, where the inner product is

$$\langle f, g \rangle = \int_a^b f g = \int_a^b f(x) \overline{g(x)} \, dx$$

$$|\int_a^b f|^2 = \left| \int_a^b 1 \cdot f(x) \, dx \right|^2 \leq \int_a^b 1 \cdot \int_a^b |f|^2 = |b-a| \cdot \int_a^b |f|^2$$

[02.3] In ℓ^2, show that the unique point in the closed unit ball closest to a point v not inside that ball is $v/|v|_{\ell^2}$.

1
Thus, the sum of the two inner products is positive, and by Cauchy-Schwarz-Bunyakowsky:

$$2|v| < \langle v, w \rangle + \langle w, v \rangle$$

Thus, 1 < |w|, which is impossible.

\\[02.4\\]

One form of the sawtooth function is $f(x) = x - \pi$ on $[0, 2\pi]$. Compute the Fourier coefficients $\hat{f}(n)$. From Plancherel-Parseval’s theorem for this function, show that

$$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \ldots = \frac{\pi^2}{6}$$

Discussion: We have the orthonormal basis $e_n(x) = \frac{1}{\sqrt{2\pi}}e^{inx}$ with $n \in \mathbb{Z}$ for the Hilbert space $L^2[0, 2\pi]$.

The Fourier coefficients are determined by Fourier’s formula

$$\hat{f}(n) = \int_0^{2\pi} f(x) \frac{e^{-inx}}{\sqrt{2\pi}} \, dx$$

For $n = 0$, this is 0. For $n \neq 0$, integrate by parts, to get

$$\hat{f}(n) = \left[f(x) \cdot \frac{e^{-inx}}{\sqrt{2\pi} \cdot (-in)} \right]_0^{2\pi} - \int_0^{2\pi} \frac{1}{\sqrt{2\pi} \cdot (-in)} \cdot -\frac{e^{-inx}}{(-in)} \, dx$$

$$= \left(\pi \cdot \frac{1}{\sqrt{2\pi} \cdot (-in)} \right) - \left(-\pi \cdot \frac{1}{\sqrt{2\pi} \cdot (-in)} \right) = \frac{2\pi}{\sqrt{2\pi} \cdot (-in)} = \frac{\sqrt{2\pi}}{-in}$$

The L^2 norm of f is

$$\int_0^{2\pi} (x - \pi)^2 \, dx = \left[\frac{(x - \pi)^3}{3} \right]_0^{2\pi} = \frac{\pi^3 - (-\pi)^3}{3} = \frac{2\pi^3}{3}$$

Thus, by Parseval,

$$\sum_{n \neq 0} \left| \frac{\sqrt{2\pi}}{-in} \right|^2 = \frac{2\pi^3}{3}$$
Paul Garrett: Examples discussion 02 (October 28, 2018)

This simplifies first to
\[
2 \sum_{n \geq 1} \frac{2\pi}{n^2} = \frac{2\pi^3}{3}
\]
and then to
\[
\sum_{n \geq 1} \frac{1}{n^2} = \frac{\pi^2}{6}
\]
That is, Parseval applied to the sawtooth function evaluates \(\zeta(2)\).

[02.5] Show that there is no \(f_o \in C^\infty[0,1]\) so that, for all \(g \in C^\infty[0,1]\), \(\int_0^1 f_o(x) g(x) \, dx = g\left(\frac{1}{2}\right)\).

Discussion: Here is just one among many possible approaches. By Cauchy-Schwarz-Bunyakowsky in \(L^2[0,1]\) with its usual inner product, for every \(g \in C^\infty[0,1]\) we’d have
\[
|g(\frac{1}{2})| = \left| \int_0^1 f_o(x) g(x) \, dx \right| = |g, f_o| \leq |g|_{L^2} \cdot |f_o|_{L^2}
\]
That is, supposedly \(g\left(\frac{1}{2}\right)\) would be bounded by a constant multiple of \(|g|_{L^2}\), for every \(g \in C^\infty\). But this is not true: we can make a variety of sequences \(\{g_n\}\) of continuous functions with support in \([\frac{1}{2} - \frac{1}{n}, \frac{1}{2} + \frac{1}{n}]\), with \(g_n\left(\frac{1}{2}\right) = 1\), and with sup \(|g_n| = 1\). Piecewise-linear tent functions of height 1 and base \([\frac{1}{2} - \frac{1}{n}, \frac{1}{2} + \frac{1}{n}]\) would do. The \(L^2\) norms go to 0 as \(n \to +\infty\).

[02.6] For \(c_1 > c_2 > c_3 > \ldots > 0\) a monotone-decreasing sequence of positive reals, with \(\lim_n c_n = 0\), show that, for every \(0 < x < 2\pi\), \(\sum_n c_n e^{inx}\) converges.

Discussion: The expression as a Fourier series should not distract us from seeing an instance of the generalized alternating-decreasing criterion again, sometimes called Dirichlet’s criterion; for a positive real sequence \(c_1, c_2, \ldots\) monotone-decreasing to 0, and for a (possibly complex) sequence \(b_1, b_2, \ldots\) with bounded partial sums \(B_n = b_1 + \ldots + b_n\), the sum \(\sum_n b_n c_n\) converges. The partial sums \(\sum_{n \leq N} e^{2\pi inx}\) are bounded for \(0 < x < 1\), by summing finite geometric series:
\[
\left| \sum_{n=-M}^{N} z^n \right| = \frac{|z^{-M} - z^{N+1}|}{|1 - z|} \leq \frac{2}{|1 - z|}
\]
so this criterion applies here.

The proof of the criterion itself is by summation by parts, a discrete analogue of integration by parts. That is, rewrite the tails of the sum as
\[
\sum_{M \leq n \leq N} b_n c_n = \sum_{M \leq n \leq N} (B_n - B_{n-1}) c_n = -B_{M-1} c_M + \sum_{M \leq n \leq N} B_n (c_n - c_{n+1}) + B_N c_{N+1}
\]
Since the partial sums are bounded, the first and last summand go to 0. Letting \(\beta\) be a bound for all the \(|B_n|\), the summation is
\[
\left| \sum_{M \leq n \leq N} B_n (c_n - c_{n+1}) \right| \leq \sum_{M \leq n \leq N} |B_n| |c_n - c_{n+1}| = \sum_{M \leq n \leq N} |B_n| (c_n - c_{n+1}) \leq \sum_{M \leq n \leq N} \beta \cdot (c_n - c_{n+1})
\]
by telescoping the series. Again, \(c_M\) and \(c_{N+1}\) go to 0. //
[02.7] Let \(b = \{ b_n \} \) be a sequence of complex numbers, such that there is a bound \(B \) such that, for every \(c = \{ c_n \} \in \ell^2, \sum_n b_n c_n \leq B \cdot |c|_{\ell^2} \). Show that \(b \in \ell^2 \).

Discussion: The assumed inequality says that \(\lambda(c) = \sum_n b_n c_n \) is a bounded linear functional on \(\ell^2 \). By Riesz-Fréchet, there is \(a = (a_1, a_2, \ldots) \in \ell^2 \) such that \(\lambda(c) = \sum_n a_n c_n \) for all \(c \in \ell^2 \). Then, with \(\{ e_n \} \) the standard (Hilbert-space) basis for \(\ell^2 \), \(b_n = \lambda(e_n) = a_n \) proves that \(a = b \), so \(b \in \ell^2 \).

[02.8] For a vector subspace \(W \) of a Hilbert space \(V \), show that \((W^\perp)^\perp \) is the topological closure of \(W \).

Discussion: Let \(\lambda_x(v) = \langle v, x \rangle \) for \(x, v \in V \). Then \(W^\perp = \bigcap_{w \in W} \ker \lambda_w \). Similarly, \((W^\perp)^\perp = \bigcap_{x \in W^\perp} \ker \lambda_x \).

From the discussion in the Riesz-Fréchet theorem, or directly via Cauchy-Schwarz-Bunyakowsky, \(\lambda_x \) is continuous, so \(\ker \lambda_x = \lambda_x^{-1}(\{0\}) \) is closed, since \(\{0\} \) is closed. (One might check that the kernel of a linear map is a vector subspace.) An arbitrary intersection of closed sets is closed, so \((W^\perp)^\perp\) is closed.

Certainly \((W^\perp)^\perp \supset W \), because for each \(w \in W \), \(\langle x, w \rangle = 0 \) for all \(x \in W^\perp \). Thus, \((W^\perp)^\perp \) is a closed subspace, containing \(W \). Being a closed subspace of a Hilbert space, \((W^\perp)^\perp \) is a Hilbert space itself. If \((W^\perp)^\perp\) were strictly larger than the topological closure \(W^\perp \) of \(W \), then there would be \(0 \neq y \in (W^\perp)^\perp \) orthogonal to \(W^\perp \) itself, contradicting \(0 \neq y \in (W^\perp)^\perp \).

[02.9] Find two dense vector subspaces \(X, Y \) of \(\ell^2 \) such that \(X \cap Y = \{ 0 \} \). (And, if you need further entertainment, can you find countably-many dense vector subspaces \(X_n \) such that \(X_m \cap X_n = \{ 0 \} \) for \(m \neq n \)?)

Discussion: First, as a variant that refers to more natural constructions, but requires non-trivial proofs to fully validate it, we can make two dense subspaces of \(L^2[0,1] \) which intersect just at \(\{0\} \). Namely, the vector space of all finite Fourier series, and the vector space of all polynomials (restricted to \([0,1] \)). We need to know that the appropriate exponentials (or sines and cosines) give a Hilbert space basis of \(L^2[0,1] \), and also Weierstraß' result on the density of polynomials in \(C^n[0,1] \), hence (depending on our definitional set-up) in \(L^2[0,1] \).

A more elementary, but trickier, approach is the following. Let \(X \) be the vector space of finite linear combinations of the standard Hilbert space basis \(\{ e_n \} \). This is a natural subspace. For the other subspace \(Y \), some sort of trickery seems to be needed, either in specification of \(Y \) itself so as to make verification of \(X \cap Y = \{ 0 \} \) easy, or a simpler specification of \(Y \) but with complicated verification that \(X \cap Y = \{ 0 \} \), or both.

One possibility involves Sun-Ze's theorem (sometimes called the Chinese Remainder Theorem), namely, that for a finite collection of mutually relatively prime integers \(N_1, \ldots, N_k \), and for integers \(b_1, \ldots, b_k \) there exists \(x \in \mathbb{Z} \) such that \(x = b_k \mod N_k \). Further, this \(x \) can be arbitrarily large, by adding multiples of the product \(N_1 \cdots N_k \) to it. Let \(p_n \) be the \(n \)th prime number, and put

\[
v_n = e_n + \sum_{k \geq 1} \frac{1}{kp_n} \cdot e_{kp_n}
\]

Of course, we claim that no (non-zero) finite linear combination \(y = \sum_n c_n \cdot v_n \) is in \(X \). That is, we claim that for any such non-zero linear combination, there are arbitrarily large indices \(\ell \) such that \(\langle y, e_{\ell} \rangle \neq 0 \). Let \(n_o \) be the largest index \(n \) such that \(e_n \neq 0 \). Invoking Sun-Ze's theorem, there exist \(\ell \geq n_o \) such that \(\ell = 1 \mod p_i \) for \(i < n_o \) and \(\ell = 0 \mod p_{n_o} \). Then

\[
\langle y, e_\ell \rangle = \sum_{n} \left(\frac{1}{n} \langle e_n, e_\ell \rangle + \sum_{k} \frac{1}{kp_n} \langle e_{kp_n}, e_\ell \rangle \right) = \sum_{n < n_o} 0 + \frac{1}{\ell} \not= 0
\]

This proves that \(X \cap Y = \{ 0 \} \).
Certainly X is dense, because every vector in ℓ^2 is an infinite sum of vectors from X, that is, an ℓ^2 limit of finite linear combinations of vectors from X.

To see that Y is dense, observe that applying an infinite version of Gram-Schmidt to the vectors v_n produces the standard basis e_n. That is, the e_n’s are infinite linear combinations of the v_n’s, so Y is dense. (Yes, there is an issue about convergence in an infinite version of Gram-Schmidt, in general!)