Examples 04

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/

[This document is http://www.math.umn.edu/~garrett/m/real/examples_2018-19/real-ex-04.pdf]

For feedback on these examples, please get your write-ups to me by Friday, February 08, 2019.

[04.1] With \(g(x) = f(x + x_o) \), express \(\hat{g} \) in terms of \(\hat{f} \), for \(f \in L^1(\mathbb{R}^n) \).

[04.2] Let \(\{b_n\} \) be a sequence of complex numbers. Suppose that, for every \(\{a_n\} \in \ell^2 \), \(\sum_n a_n b_n \) converges. Show that \(\{b_n\} \in \ell^2 \).

[04.3] Let \(g \) be a measurable \([0, +\infty]\)-value function on \([a, b]\) such that, for every \(f \in L^2[a, b] \), \(\int_a^b \left| f(x) g(x) \right| \, dx < \infty \). Show that \(g \in L^2[a, b] \).

[04.4] Give a persuasive proof that the function

\[
 f(x) = \begin{cases}
 0 & \text{(for } x \leq 0) \\
 e^{-1/x} & \text{(for } x > 0)
 \end{cases}
\]

is infinitely differentiable at 0. Use this to make a smooth step function: 0 for \(x \leq 0 \) and 1 for \(x \geq 1 \), and goes monotonically from 0 to 1 in the interval \([0, 1]\). Use this to construct a family of smooth cut-off functions \(\{f_n : n = 1, 2, 3, \ldots\} \): for each \(n \), \(f_n(x) = 1 \) for \(x \in [-n, n] \), \(f_n(x) = 0 \) for \(x \notin [-(n+1), n+1] \), and \(f_n \) goes monotonically from 0 to 1 in \([-n, n]\) and monotonically from 1 to 0 in \([n, n+1]\).

[04.5] Give an explicit non-zero function \(f \) such that \(\int_\mathbb{R} x^n f(x) \, dx = 0 \).

[04.6] Show that \(\chi_{[a,b]} \ast \chi_{[c,d]} \) is a piecewise-linear function, and express it explicitly.

[04.7] Compute \(e^{-\pi x^2} \ast e^{-\pi x^2} \) and \(\frac{\sin x}{x} \ast \frac{\sin x}{x} \). (Be careful what you say: \(\frac{\sin x}{x} \) is not in \(L^1(\mathbb{R}) \), so there are potential problems with convolution.)

[04.8] For \(f \in \mathcal{S} \), show that

\[
 \lim_{\varepsilon \to 0^+} f(x) \ast e^{-\pi x^2 / \varepsilon} = f(x)
\]

[04.9] For \(f \in \mathcal{S} \), show that

\[
 \lim_{t \to \infty} f(x) \ast \frac{2 \sin tx}{tx} = f(x)
\]

[04.10] Evaluate the Borwein integral

\[
 \int_\mathbb{R} \frac{\sin x}{x} \cdot \frac{\sin x/3}{x/3} \cdot \frac{\sin x/5}{x/5} \, dx
\]