04b. Product measures and Fubini-Tonelli theorem

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/
[This document is http://www.math.umn.edu/~garrett/m/real/notes_2018-19/04b_Fubini-Tonelli.pdf]

1. Product measures
2. Fubini-Tonelli theorem(s)
3. Completions of measures

1. Product measures, completions of measures

Let \(X, \mu \) and \(Y, \nu \) be measure spaces with corresponding \(\sigma \)-algebras \(A, B \). Assume \(X \) and \(Y \) are \(\sigma \)-finite, in the sense that they are countable unions of finite-measure sets.

First, the product \(\sigma \)-algebra is the \(\sigma \)-algebra in \(X \times Y \) generated by all products \(E \times F \) with \(E \in A \) and \(F \in B \).

For iterated integrals to make sense, we need to check a few things. For \(E \in A \times B \), for \(x \in X \) and \(y \in Y \), let
\[
E_x = \{ y \in Y : (x, y) \in E \} \quad \text{and} \quad E^y = \{ x \in X : (x, y) \in E \}
\]
As a consistency check, we have

[1.1] Theorem: For \(E \in A \times B \), for \(x \in X \) and \(y \in Y \), \(E_x \in A \) and \(E^y \in B \). The function \(x \to \nu(E_x) \) is \(\mu \)-measurable, \(y \to \mu(E^y) \) is \(\nu \)-measurable, and
\[
\int_X \nu(E_x) \, d\mu(x) = \int_Y \mu(E^y) \, d\nu(y)
\]

Proof: [... iou ...] // /

Then the product measure \(\mu \times \nu \) can be defined in the expected fashion: for \(E \in A \times B \),
\[
(\mu \times \nu)(E) = \int_X \nu(E_x) \, d\mu(x) = \int_Y \mu(E^y) \, d\nu(y)
\]

2. Fubini-Tonelli theorem(s)

Let \(X, \mu \) and \(Y, \nu \) be measure spaces with corresponding \(\sigma \)-algebras \(A, B \). Assume \(X \) and \(Y \) are \(\sigma \)-finite.

[2.1] Theorem: (Fubini-Tonelli) For complex-valued measurable \(f, g \), if any one of
\[
\int_X \int_Y |f(x, y)| \, d\mu(x) \, d\nu(y) \quad \int_Y \int_X |f(x, y)| \, d\nu(y) \, d\mu(x) \quad \int_{X \times Y} |f(x, y)| \, d\mu \times \nu
\]
is finite, then they all are finite, and are equal. For \([0, +\infty] \)-valued functions \(f \),
\[
\int_X \int_Y f(x, y) \, d\mu(x) \, d\nu(y) = \int_Y \int_X f(x, y) \, d\nu(y) \, d\mu(x) = \int_{X \times Y} f(x, y) \, d\mu \times \nu
\]
although the values may be \(+\infty\).
Proof: [...] iou [...]

To explain what the product measure $\mu \times \nu$ should be, and also for a proof of the theorem, we need the notion of monotone class. A monotone class in a set X is a set \mathcal{M} of subsets of X closed under countable ascending unions and under countable descending intersections. That is, if

$$M_1 \subset M_2 \subset M_3 \subset \ldots$$

$$N_1 \supset N_2 \supset N_3 \supset \ldots$$

are collections of sets in \mathcal{M}, then

$$\bigcup_i M_i \quad \bigcap_i N_i$$

both lie in \mathcal{M}, as well. Another characterization of $A \times B$ is that it is the smallest monotone class containing all products $E \times F$ with $E \in A$ and $F \in B$.

Let f be a $A \times B$-measurable function on $X \times Y$. (Note that this does not depend upon having a ‘product measure’, but only upon the sigma-algebra!) Then all the functions

$$x \to f(x, y) \quad \text{(for fixed } y \in Y)$$

$$y \to f(x, y) \quad \text{(for fixed } x \in X)$$

are measurable (in appropriate senses). In particular, we could apply this to the characteristic function of a set $G \in A \times B$.

Now we come to the point where the sigma-finiteness of X and Y is necessary. For $G \in A \times B$, let

$$f(x) = \nu(G_x) \quad g(y) = \mu(G_y)$$

where G_x, G_y are as above. We have already noted that f, g are measurable. Further,

$$\int_X f(x) \, d\mu(x) = \int_Y g(y) \, d\nu(y)$$

This is proven by showing that the collection of G for which the conclusion is true is a monotone class containing all products $E \times F$.

In light of the latter equality, we can define the product measure $\mu \times \nu$ on $G \in A \times B$ by

$$(\mu \times \nu)(G) = \int_X f(x) \, d\mu(x) = \int_Y g(y) \, d\nu(y)$$

with notation as just above. The countable additivity follows from a preliminary version of Fubini’s theorem, namely that if f_i are countably-many $[0, +\infty]$-valued functions on a measure space Ω, then

$$\int_\Omega \sum_i f_i = \sum_i \int_\Omega f_i$$

which itself is a little corollary of the monotone convergence theorem.

sectionCompletions of measures

For example, a reasonable measure on $\mathbb{R}^m \times \mathbb{R}^n$ should include many sets not expressible as countable unions of products $E \times F$ where $E \subset \mathbb{R}^m$ and $F \subset \mathbb{R}^n$. For example, diagonal subsets of the form

$$D = \{(x, x) : 0 \leq x \leq 1\} \subset \mathbb{R}^2$$

are not countable unions of products, but should surely be measurable.

One way to accomplish this is by completion of the product measure.
Then the completion of $\mu \times \nu$ further assigns measure 0 to any subset S of $T \in A \times B$ with $(\mu \times \nu)(T) = 0$, and adjoins all such sets to the σ-algebra $A \times B$.

[2.2] Claim: Lebesgue measure on $\mathbb{R}^m \times \mathbb{R}^n$ is the completion of the product of Lebesgue measures on \mathbb{R}^m and \mathbb{R}^n.

Proof: [... iou ...] ///

Completing a product measure is usually what we want, but it slightly complicates the statement of the corresponding Fubini-Tonelli theorem:

[2.3] Theorem: Let X, A, μ and Y, B, ν be complete measure spaces, with X, Y σ-finite. Let f be a function on $X \times Y$ measurable with respect to the completion of the product measure. Then $x \to f(x, y)$ and $y \to f(x, y)$ are μ-measurable and ν-measurable (only) almost everywhere.

Proof: [... iou ...] ///

[2.4] Remark: To be precise, completeness is a property of σ-algebras, not of measures.