03b. Completeness of L^p spaces

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/

[This document is http://www.math.umn.edu/~garrett/m/real/notes_2019-20/03b_completeness_of_Lp.pdf]

1. Examples: spaces L^p

Given a measure space X, for $1 \leq p < \infty$ the usual L^p spaces are

$$L^p(X) = \{\text{measurable } f : |f|_{L^p} < \infty\} \text{ modulo } \sim$$

with the usual L^p norm

$$|f|_{L^p} = \left(\int_X |f|^p\right)^{1/p}$$

and associated metric

$$d(f, g) = |f - g|_{L^p}$$

taking the quotient by the equivalence relation

$$f \sim g \text{ if } f - g = 0 \text{ off a set of measure 0}$$

[1.1] Remark: For general measure spaces this is not a metric until we take the quotient, since, otherwise, two different functions differing only on a set of measure 0 would be distance 0 from each other, but would not be equal.

[1.2] Remark: These L^p functions have inevitably ambiguous pointwise values, in conflict with the naive formal definition of function. Nevertheless, one usually does think of L^p functions as being more-or-less functions.

A simple instance of this construction, for a measure that has no sets of measure 0, so needs no quotient, is

$$\ell^p = \{\text{complex sequences } \{c_i\} \text{ with } \sum_i |c_i|^p < \infty\}$$

with norm $|(c_1, c_2, \ldots)|_{\ell^p} = \left(\sum_i |c_i|^p\right)^{1/p}$. The analogue of the following theorem for ℓ^p is more elementary.

[1.3] Theorem: The space $L^p(X)$ is a complete metric space.

[1.4] Remark: In fact, as used in the proof, a Cauchy sequence f_i in $L^p(X)$ has a subsequence converging pointwise off a set of measure 0 in X.

Proof: The triangle inequality here is Minkowski’s inequality. To prove completeness, choose a subsequence f_{n_i} such that

$$|f_{n_i} - f_{n_{i+1}}|_p < 2^{-i}$$

and put

$$g_n(x) = \sum_{1 \leq i \leq n} |f_{n_{i+1}}(x) - f_{n_i}(x)|$$

and

$$g(x) = \sum_{1 \leq i < \infty} |f_{n_{i+1}}(x) - f_{n_i}(x)|$$
The infinite sum is not necessarily claimed to converge to a finite value for every \(x \). The triangle inequality shows that \(|g_n|_p \leq 1 \). Fatou’s Lemma asserts that for \([0, \infty]\)-valued measurable functions \(h_i \)

\[
\int_X \left(\lim \inf_i h_i \right) \leq \lim \inf_i \int_X h_i
\]

Thus, \(|g|_p \leq 1 \), so is finite. Thus,

\[
f_{n_1}(x) + \sum_{i \geq 1} (f_{n_{i+1}}(x) - f_{n_i}(x))
\]

converges for almost all \(x \in X \). Let \(f(x) \) be the sum at points \(x \) where the series converges, and on the measure-zero set where the series does not converge put \(f(x) = 0 \). Certainly

\[
f(x) = \lim_i f_{n_i}(x) \quad \text{(for almost all } x)\]

Now prove that this almost-everywhere pointwise limit is the \(L^p \)-limit of the original sequence. For \(\varepsilon > 0 \) take \(N \) such that \(|f_m - f_n|_p < \varepsilon \) for \(m, n \geq N \). Fatou’s lemma gives

\[
\int |f - f_n|^p \leq \lim \inf_i \int |f_{n_i} - f_n|^p \leq \varepsilon^p
\]

Thus \(f - f_n \) is in \(L^p \) and hence \(f \) is in \(L^p \). And \(|f - f_n|_p \to 0 \). ///

[1.5] **Theorem:** For a locally compact Hausdorff topological space \(X \) with positive regular Borel measure \(\mu \), the space \(C^0_c(X) \) of compactly-supported continuous functions is dense in \(L^1(X, \mu) \).

Proof: From the definition of integral attached to a measure, an \(L^1 \) function is approximable in the \(L^1 \)-metric by a simple function, that is, a measurable function assuming only finitely-many values. That is, a simple function is a finite linear combination of characteristic functions of measurable sets \(E \). Thus, it suffices to approximate characteristic functions of measurable sets by continuous functions. The assumed regularity of the measure gives compact \(K \) and open \(U \) such that \(K \subset E \subset U \) and \(\mu(U - E) < \varepsilon \), for given \(\varepsilon > 0 \). Urysohn’s lemma says that there is continuous \(f \) identically 1 on \(K \) and identically 0 off \(U \). Thus, \(f \) approximates the characteristic function \(\chi_E \) of \(E \) in \(L^1 \):

\[
|f - \chi_E|_L^1 = \int_X |f - \chi_E| = \int_{U - K} |f - \chi_E| = \int_{U - K} 1 < \varepsilon
\]

///

[1.6] **Corollary:** For locally compact Hausdorff \(X \) with regular Borel measure \(\mu \), \(L^1(X, \mu) \) is the \(L^1 \)-metric completion of \(C^0_c(X) \), the compactly-supported continuous functions. ///

[1.7] **Remark:** Defining \(L^1(X, \mu) \) to be the \(L^p \) completion of \(C^0_c(X) \) avoids discussion of ambiguous values on sets of measure zero, but also leaves ambiguity about in what sense the completion consists of functions.