08f. Poisson summation by distribution theory

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/

Let \(\psi(y) = e^{2\pi iy} \) and \(\psi_x(y) = \psi(xy) \). The additive group \(\mathbb{R} \) acts on \(\mathcal{S} \) and on \(\mathcal{D} \) continuously by the regular representation \(R_g f(x) = f(x + g) \). The natural duality gives the (continuous) dual or contragredient representation on \(\mathcal{S}^* \) and \(\mathcal{D}^* \) by
\[
(R^*_g u)(f) = u(R_{-g} f)
\]

There are two fundamental identities regarding this regular representation and Fourier transforms (for \(f \in \mathcal{S} \)):
\[
(R_x f)^\wedge = \psi_x \hat{f} \\
(\psi_x f) = R_{-x} \hat{f}
\]

From these and from the definition of Fourier transform for tempered distributions, the same identities hold for tempered distributions, as well.

For a collection \(\Phi \) of smooth functions on \(\mathbb{R} \) with common zero set \(Z \), and a distribution \(u \) such that \(\varphi u = 0 \) for all \(\varphi \in \Phi \), \(\text{spt} u \subset Z \). In particular, for \(\Phi \) a subset of \(C^\infty_0(\mathbb{R}) \) having a single point \(\{0\} \) as common zero set. Let \(O_0 \) be the ring of germs of smooth functions at 0, and let \(\mathfrak{m} \) be its unique maximal ideal, consisting of smooth functions vanishing at 0. Suppose that the image in \(O_0 \) of the ideal generated by \(\Phi \) in \(C^\infty_0(\mathbb{R}) \) is exactly \(\mathfrak{m}^n \). That is, we suppose that all functions in \(\Phi \) vanish at 0 to order at least \(n \), and every germ of a smooth function at 0 vanishing to order at least \(n \) is a linear combination over \(O_0 \) of elements of \(\Phi \). Let \(u \) be a distribution so that \(\varphi u = 0 \) for all \(\varphi \in \Phi \). Then \(u \) is a complex linear combination of \(\delta_0, \ldots, \delta^{(n-1)}_0 \).

Consider the tempered distributions
\[
u(f) = \sum_{n \in \mathbb{Z}} f(n) \quad \text{and} \quad v(f) = \sum_{n \in \mathbb{Z}} \hat{f}(n)
\]
The Poisson summation formula asserts that \(u = v \). We will identify properties possessed by both \(u \) and \(v \), and prove that there is a unique tempered distribution with these properties.

Certainly \(u(\psi_n f) = u(f) \) for \(n \in \mathbb{Z} \), and \(u(R_n f) = u(f) \) for \(n \in \mathbb{Z} \). Thus,
\[
\psi_n u = u \quad R_n u = u \quad \text{for all} \ n \in \mathbb{Z}
\]
The two identities above which intertwine Fourier transform and the regular representation imply that \(v \) has the same properties. Further, letting \(\gamma(x) := e^{-\pi x^2} \), we have \(\hat{\gamma} = \gamma \), and so \(u(\gamma) = v(\gamma) \).

Now we prove that the space of tempered distributions \(w \) such that
\[
\psi_n w = w \quad R_n w = w \quad \text{for all} \ n \in \mathbb{Z}
\]
is one-dimensional over \(\mathbb{C} \). This, together with the evaluation of both \(u \) and \(v \) on \(\gamma \), will prove the Poisson summation formula.

The common zero set of the collection \(\Phi = \{ \psi_n - 1 : n \in \mathbb{Z} \} \) is \(\mathbb{Z} \), so any distribution \(w \) annihilated by multiplication by all \(\psi_n - 1 \) must be supported on \(\mathbb{Z} \). Let \(\varphi \in C^\infty_0(\mathbb{R}) \) be such that \(\text{spt} \varphi \cap \mathbb{Z} = \{0\} \) and \(\varphi = 1 \) on some neighborhood of 0. Then \(\text{spt}(\varphi w) = \{0\} \). Further, since the \(\psi_n - 1 \) generate the whole maximal ideal in the ring of germs of smooth functions at 0, we conclude that \(\varphi w \) is a constant multiple of \(\delta \). By use of a partition of unity to localize the issues, we find that
\[
w = \sum_c c_n \delta_n
\]
for some constants c_n. The translation invariance of w implies that all the constants c_n are the same. Thus, there is a constant c so that

$$w = c \sum \delta_n$$

This is the desired uniqueness (one-dimensionality) assertion.