December 15, 2006

The Constant Term

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/

• Basic estimates
• The hierarchy of constant terms

Let G be a reductive real Lie group, for example $G = GL(n, \mathbb{R})$. Let A be a maximal \mathbb{R}-split torus, in the case of $GL(n, \mathbb{R})$ the diagonal matrices, with connected component of the identity A^+. Let K be a maximal compact subgroup of G, for $GL(n, \mathbb{R})$ the standard orthogonal group $O(n)$. Let N be the unipotent radical of a minimal parabolic containing A, in the case of $GL(n, \mathbb{R})$ upper-triangular unipotent matrices. The Iwasawa decomposition of G is with respect to this data is

$$G = N \cdot A^+ \cdot K$$

Thus, the function $g \mapsto a_g$ defined by expressing $g = na_gk$ with $n \in N$, $a \in A^+$, $k \in K$ is well-defined.

Let $\log : A^+ \to a$ be the inverse of the Lie exponential map from the Lie algebra a of A^+ to A^+ itself. For λ in the complexification $a^* \otimes_{\mathbb{R}} \mathbb{C}$ of the group of characters of a, keeping in mind that $a_g \in A^+$, write

$$a^\lambda g = e^{\lambda (\log a_g)}$$

For brevity, we may abbreviate the function $g \mapsto a^\lambda_g$ simply as a^λ.

[0.1] Lemma: Let C be a compact set in G, $x \in G$. Then there is a compact subset C_A of A^+ such that $y \in xC$ implies $a_y \in a_x \cdot C_A$.

Proof: Let $G = N \cdot A^+ \cdot K$ be an Iwasawa decomposition as above. Given a compact subset C of G, $C \cdot K$ is still compact and contains C, and is right K-stable. For a right K-stable compact subset C

$$C \subset (N A^+ \cap C) \cdot K$$

since in Iwasawa coordinates $pk \in C$ with $p \in NA^+$ and $k \in K$ implies by right K-stability that $p = (pk) \cdot k^{-1}$ is also in C. There are compact subsets $C_N \subset N$, $C_A \subset A^+$ so that

$$K \cdot C \subset C_N \cdot C_A \cdot K$$

Then

$$xC \subset Na_xK \cdot C \subset Na_x \cdot C_N C_A K \subset N \cdot (a_x N a_x^{-1}) \cdot (a_x C_A) \cdot K \subset N \cdot (a_x C_A) \cdot K$$

which shows that for $y \in xC$ the element a_y is in $a_x C_A$. //

A left $N \cap \Gamma$-invariant function \mathbb{C}-valued f on G is said to be of moderate growth of exponent λ on a fixed Siegel set

$$S_t = \{ x \in G : a^\lambda_x \geq t \text{ for all positive simple roots } \alpha \}$$

if

$$f(g) = O(a^\lambda_g) \quad (\text{for } g \in S_t)$$

[0.2] Corollary: Fix an exponent λ. For any $\varphi \in C_c^\infty(G)$ there is a constant c and constant $0 < \mu$ so that, for any f of moderate growth of exponent λ on a Siegel set S_t, $\varphi \cdot f$ is of moderate growth of exponent λ on the Siegel set $S_{\mu t}$.
The interchange of differentiation and integration is justified by observing that the integral is compactly supported, continuous, and takes values in a quasi-complete locally convex topological vector space on which differentiation is a continuous linear map.
Remark: For $G = GL(n)$, the standard simple positive roots are
\[
\alpha_i \left(\begin{array}{c} m_1 \\ m_2 \\ \vdots \\ m_n \end{array} \right) = m_i/m_{i+1}
\]
for $1 \leq i \leq n - 1$.

Remark: For non-maximal parabolics there is not the same sort of clear decrease of the exponent of growth. Instead, a somewhat more complicated estimate holds.

Proof: First, we give a proof for $G = GL(2)$. Normalizing the measure of $(\Gamma \cap N) \setminus N$ to be 1,
\[
(f_P - f)(x) = \int_{(\Gamma \cap N) \setminus N} f(nx) - f(x) \, dn = \int_{0 \leq t \leq 1} f(e^{tX} \cdot x) - f(x) \, dt
\]
where X is the element
\[
X = \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right)
\]
in the Lie algebra of N. By the fundamental theorem of calculus
\[
f(e^{tX} \cdot x) - f(x) = \int_0^t \frac{\partial}{\partial r} \big|_{r=0} f(e^{(r+s)X} \cdot x) \, ds = \int_0^t -X^{\text{left}} f(e^{sX} \cdot x) \, ds
\]
where X^{left} is the natural right-G-invariant operator attached to X via the left regular representation. The main mechanism of this proof resides in the conversion of this operator to a left-G-invariant operator attached to the right regular representation, as follows.

\[
X^{\text{left}} f(e^{sX} \cdot x) = \left(\frac{\partial}{\partial r} \big|_{r=0} f \right) (e^{sX} \cdot x) = \left. \frac{\partial}{\partial r} \right|_{r=0} f(e^{sX} \cdot x \cdot e^{r \cdot \text{Ad}^{-1}(X)}) = \text{Ad}^{-1}(X) f(e^{sX} \cdot x)
\]
where $\text{Ad}^{-1}(X)$ is the left-G-invariant operator attached to X via the right regular representation. Let
\[
x = n_x a_x \theta_x
\]
with $n_x \in N$, $a_x \in M$, $\theta_x \in K$. Then
\[
\text{Ad}^{-1}(X) = \text{Ad} (\theta_x^{-1} a_x^{-1} n_x^{-1})(X) = \text{Ad} (\theta_x^{-1} a_x^{-1})(X)
\]
Further,
\[
\text{Ad} a_x^{-1}(X) = (a_x)^{-2} \cdot X
\]
since X is in the $a_x \rightarrow a_x^2$ rootspace. Then
\[
\text{Ad} (\theta_x^{-1} a_x^{-1})(X) = a_x^{-2} \cdot \text{Ad} \theta_x^{-1}(X) = a_x^{-2} \cdot \sum_i c_i(\theta_x)Y_i
\]
where the c_i are continuous functions (depending upon X) on K and $\{Y_i\}$ is a basis for the Lie algebra of G. Since the c_i are continuous on the compact set K, they have a uniform bound c. Altogether,
\[
(f_P - f)(x) = \int_{0 \leq t \leq 1} \int_{0 \leq s \leq t} a_x^{-2} \left(-\sum_i c_i(\theta_x)Y_i \right) f(e^{sX} \cdot x) \, ds \, dt
\]
\[
= a_x^{-2} \cdot \sum_i c_i(\theta_x) \int_{0 \leq t \leq 1} \int_{0 \leq s \leq t} (-X_i f)(e^{sX} \cdot x) \, ds \, dt = a_x^{-2} \cdot \sum_i c_i(\theta_x) \int_{0 \leq t \leq 1} (-Y_i f)(e^{tX} \cdot x) \, dt \\
= a_x^{-2} \cdot \sum_i c_i(\theta_x)(-Y_i f)p(x)
\]

In this case the only root in \(N \) is \(a_x \rightarrow a_x^2 \), so the assertion of the proposition holds in this case (where \(G = GL(2) \)).

Next, we redo the proof to work at least for maximal proper parabolics \(P \) having abelian unipotent radicals \(N \). (The general case is complicated only in aspects somewhat irrelevant to the main point.) Normalizing the measure of \((\Gamma \cap N)\backslash N\) to be 1, we can write

\[
(f - f_P)(x) = \int_{(\Gamma \cap N)\backslash N} f(nx) - f(x) \, dn = \int_{[0,1]^k} f(e^{t_1X_1 + \cdots + t_kX_k} \cdot x) - f(x) \, dt_1 \cdots dt_k
\]

where \(X_1, \ldots, X_k \) is a basis for the Lie algebra of \(N \) so that

\[
\{t_1X_1 + \cdots + t_kX_k : 0 \leq t_i \leq 1, \ 1 \leq i \leq k\}
\]

maps bijectively to \((\Gamma \cap N)\backslash N\), using the abelian-ness to know that this is possible.

By the fundamental theorem of calculus, for \(X \) in the Lie algebra,

\[
f(e^{tX} \cdot x) - f(x) = \int_0^t \frac{\partial}{\partial r} |_{r=0} f(e^{(r+s)X} \cdot x) \, ds = \int_0^t -X_{left} f(e^{sX} \cdot x) \, ds
\]

where \(X_{left} \) is the natural right-\(G\)-invariant operator attached to \(X \). (The main mechanism of this proof resides in the conversion of such operators to left-\(G\)-invariant operators.) Rewrite this integral (by unteleoping) as a sum of \(k \) integrals of the form

\[
\int_{[0,1]^k} f(e^{t_1X_1 + \cdots + t_iX_i} \cdot x) - f(e^{t_1X_1 + \cdots + t_{i-1}X_{i-1}} \cdot x) \, dt_1 \cdots dt_k
\]

Fix the index \(i \), and abbreviate

\[
Y = t_1X_1 + \cdots + t_{i-1}X_{i-1}
\]

and let \(t = t_i \), \(X = X_i \). Then, by the fundamental theorem of calculus, the previous integrand integrated just in \(t = t_i \) is

\[
\int_{0 \leq t \leq 1} f(e^{Y+tX} \cdot x) - f(e^{Y} \cdot x) \, dt = \int_{0 \leq t \leq 1} \int_{0 \leq s \leq t} \frac{\partial}{\partial s} |_{s=0} f(e^{Y+sX+tX} \cdot x) \, ds \, dt
\]

\[
= \int_{0 \leq t \leq 1} \int_{0 \leq s \leq t} (-X_{left} f)(e^{Y+sX} \cdot x) \, ds \, dt
\]

We convert the operator \(X_{left} \) to an operator on the right (and, thus, left \(G \)-invariant), as follows.

\[
(X_{left} f)(e^{Y+sX} \cdot x) = \left(\frac{\partial}{\partial r} |_{r=0} f\right)(e^{Y+rX+sX} \cdot x)
\]

\[
= \frac{\partial}{\partial r} |_{r=0} f\left(e^{Y+sX} \cdot x \cdot e^{r \cdot \text{Ad} x^{-1}(X)}\right) = \text{Ad} x^{-1}(Y) f(e^{Y+sX} \cdot x)
\]

where \(\text{Ad} x^{-1}(X) \) is the left-\(G\)-invariant operator attached to \(Y \) via the right regular representation. Let

\[
x = n_x a_x \theta_x
\]
with $n_x \in N$, $a_x \in M$, $\theta_x \in K$. Then

$$\text{Ad} x^{-1}(X) = \text{Ad} (\theta_x^{-1} a_x^{-1} n_x^{-1})(X) = \text{Ad} (\theta_x^{-1} a_x^{-1})(X)$$

using again the assumed abelian-ness of the Lie algebra of N. Now suppose further that X lies in the β rootspace in the Lie algebra of N. Then

$$\text{Ad} a_x^{-1}(X) = \beta(a_x)^{-1} \cdot X$$

and

$$\text{Ad} (\theta_x^{-1} a_x^{-1})(X) = \beta(a_x)^{-1} \cdot \text{Ad} \theta_x^{-1}(X) = \beta(a_x)^{-1} \cdot \sum_{1 \leq i \leq k} c_i(\theta_x) Y_i$$

where the c_i are continuous functions (depending upon X) on K and $\{ Y_i \}$ is a basis for the Lie algebra of G. Since the c_i are continuous on the compact set K, they have a uniform bound c (depending on X). Then altogether

$$\int_{0 \leq t \leq 1} f(e^{Y+tx} \cdot x) - f(e^Y \cdot x) \, dt = \beta(a_x)^{-1} \cdot \sum_{1 \leq i \leq k} c_i(\theta_x) \int_{0 \leq t \leq 1} \int_{0 \leq s \leq t} (-Y_i f)(e^{Y+sx} \cdot x) \, ds \, dt$$

On Siegel sets, for all such β,

$$\beta(a_x)^{-1} = O(a_x^{-\alpha})$$

Thus, using the exponent λ moderate growth of each of the functions $Y_i f$, we have found

$$\int_{0 \leq t \leq 1} f(e^{Y+tx} \cdot x) - f(e^Y \cdot x) \, dt = O(a_x^{\lambda-\alpha})$$

or, in the original notation,

$$\int_{0 \leq t \leq 1} f(e^{t_1 X_1 + \cdots + t_i \cdot x_i} \cdot x) - f(e^{t_1 X_1 + \cdots + t_i x_i} \cdot x) \, dt_i = O(a_x^{\lambda-\alpha})$$

Then, integrating in dt_1, \ldots, dt_{i-1} and in dt_{i+1}, \ldots, dt_k over copies of $[0,1]$ gives the same estimate for the k-fold integral:

$$\int_{[0,1]^k} f(e^{t_1 X_1 + \cdots + t_i \cdot x_i} \cdot x) - f(e^{t_1 X_1 + \cdots + t_i x_i} \cdot x) \, dt_1 \ldots dt_k = O(a_x^{\lambda-\alpha})$$

This is the assertion. ///

[0.7] Corollary: Let P be a maximal proper parabolic, with α the unique simple positive root in N. For f smooth of moderate growth of exponent λ in Siegel sets, and for $\varphi : f = f$ for some $\varphi \in C^\infty_c(G)$, $f - f_P$ is of exponent $\lambda - \ell \alpha$ for all positive integers ℓ.

Proof: If $\varphi f = f$ then the previous corollary on uniform moderate growth asserts that Lf is of moderate growth exponent λ for every L in the universal enveloping algebra. On the other hand, the previous proposition shows that since every $X f$ is of exponent λ, $f - f_P$ is of exponent $\lambda - \alpha$. But then the uniform moderate growth assures that every $X(f - f_P)$ is of exponent $\lambda - \alpha$, as well. Applying the last proposition again, we find that

$$(X f - X f_P) - (X f - X f_P)_P = X f - X f_P = X(f - f_P)$$

is of exponent $\lambda - 2 \cdot \alpha$. This begins an induction which proves the corollary. ///
1. The hierarchy of constant terms

Let Δ denote the collection of simple (positive) roots. For each $\alpha \in \Delta$, there is a maximal proper parabolic P_α whose unipotent radical N_α has Lie algebra n containing the α^{th} root space g_α in the Lie algebra g of G. In particular, the Lie algebra n is exactly the sum of all the rootspaces g_β with $\beta \geq \alpha$.

Let c_α be the mapping which computes the P_α constant term

$$c_\alpha f(g) = \int_{\Gamma N_\alpha \backslash N_\alpha} f(ng) \, dn$$

for locally integrable f left-invariant under a co-compact subgroup Γ_{N_α} of N_α. The group N_α has Haar measure normalized so that $\text{meas}(\Gamma_{N_\alpha} \backslash N_\alpha) = 1$.

In particular, for simplicity we assume a consistency relation among these co-compact subgroups Γ_{N_α} by letting $\Gamma_{N_{\min}}$ be a cocompact subgroup of the unipotent radical of a minimal parabolic

$$P_{\min} = \cap_{\alpha \in \Delta} P_\alpha$$

and take

$$\Gamma_{N_\alpha} = N_\alpha \cap \Gamma_{N_{\min}}$$

A simple example is to take $G = GL(n, \mathbb{R})$ and

$$\Gamma_{N_{\min}} = \text{upper-triangular unipotent matrices with integer entries}$$

[1.1] **Lemma:** For simple roots α, β,

$$c_\alpha \circ c_\beta = c_\beta \circ c_\alpha$$

Proof: A direct computation, changing variables in the integrals definitions of these operators, using the unimodularity of the groups, etc. ///

[1.2] **Proposition:** Let P_S be the parabolic whose unipotent radical contains exactly the simple roots S. Let c_P be the constant term operator for P. Then

$$1 - c_P = \prod_{\alpha \in S} (1 - c_\alpha)$$

[1.3] **Corollary:** Let f be left $\Gamma_{N_{\min}}$-invariant and Z-finite and K-finite. Then

$$\left(\prod_{\alpha \in \Delta} (1 - c_\alpha) \right) f$$

is of rapid decay in any Siegel set aligned with the implied family of parabolic subgroups.